Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39090295

RESUMEN

Understanding the fates and impacts of microplastics requires information on their sizes, polymer types, concentrations, and spatial and temporal distributions. Here, we focused on large (LMPs, 500 µm to 5 mm) and small (SMPs, 25 to 500 µm) microplastics sampled with the exact same protocol in nine of the major European rivers during the seven months of the Tara Microplastic Expedition. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC-MS) analyses were used to determine the microplastics contents by number and mass. The median LMP concentration was 6.7 particles m-3, which was lower than those in other regions of the world (America and Asia). The SMP mass concentration was much higher to the LMP concentrations, with SMP/LMP ratios up to 1000 in some rivers. We did not observe a systematic positive effect of urban areas for the two size classes or polymers; this could be explained by the fact that the transport of microplastic is highly heterogeneous in rivers. We believe that this study has important implications for predictive models of plastics distribution and fate in aquatic environments.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39090296

RESUMEN

Every year, rivers introduce a staggering amount of hundred kilotons of plastic into the Oceans. This plastic is inhabited by microorganisms known as the plastisphere, which can be transferred between different ecosystems through the transport of microplastics. Here, we simulated the microbial colonization of polyethylene-based plastic pellets that are classically used to manufacture large-scale plastic products. The pellets were immersed for 1 month in four to five sampling stations along the river-to-sea continuum of nine of the major European rivers. This study presents the first untargeted metabolomics analysis of the plastisphere, by using ultra high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). The plastisphere metabolomes were similar in the Rhine and Rhone rivers, while being different from the Tiber and Loire rivers, which showed greater similarity to the Thames and Seine rivers. Interestingly, we found a clear distinction between plastisphere metabolomes from freshwater and marine water in most of the river-to-sea continuum, thus suggesting a complete segregation in plastisphere metabolites that is not consistent with a major transfer of microorganisms between the two contrasted ecosystems. Putative annotations of 189 discriminating metabolites suggested that lipid metabolism was significantly modulated. These results enlightened the relevance of using environmental metabolomic as complementary analysis to the current OMICs analysis.

3.
Environ Sci Pollut Res Int ; 31(28): 41118-41136, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38844633

RESUMEN

Plastics are offering a new niche for microorganisms colonizing their surface, the so-called "plastisphere," in which diversity and community structure remain to be characterized and compared across ocean pelagic regions. Here, we compared the bacterial diversity of microorganisms living on plastic marine debris (PMD) and the surrounding free-living (FL) and organic particle-attached (PA) lifestyles sampled during the Tara expeditions in two of the most plastic polluted zones in the world ocean, i.e., the North Pacific gyre and the Mediterranean Sea. The 16S rRNA gene sequencing analysis confirmed that PMD are a new anthropogenic ocean habitat for marine microbes at the ocean-basin-scale, with clear niche partitioning compared to FL and PA lifestyles. At an ocean-basin-scale, the composition of the plastisphere communities was mainly driven by environmental selection, rather than polymer types or dispersal effect. A plastisphere "core microbiome" could be identified, mainly dominated by Rhodobacteraceae and Cyanobacteria. Predicted functions indicated the dominance of carbon, nitrogen and sulfur metabolisms on PMD that open new questions on the role of the plastisphere in a large number of important ecological processes in the marine ecosystem.


Asunto(s)
Microbiota , Plásticos , ARN Ribosómico 16S , Mar Mediterráneo , Océanos y Mares , Bacterias/clasificación , Bacterias/genética , Ecosistema
4.
J Hazard Mater ; 466: 133573, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306834

RESUMEN

Biosourced and biodegradable plastics offer a promising solution to reduce environmental impacts of plastics for specific applications. Here, we report a novel bacterium named Alteromonas plasticoclasticus MED1 isolated from the marine plastisphere that forms biofilms on foils of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Experiments of degradation halo, plastic matrix weight loss, bacterial oxygen consumption and heterotrophic biosynthetic activity showed that the bacterial isolate MED1 is able to degrade PHBV and to use it as carbon and energy source. The likely entire metabolic pathway specifically expressed by this bacterium grown on PHBV matrices was shown by further genomic and transcriptomic analysis. In addition to a gene coding for a probable secreted depolymerase, a gene cluster was located that encodes characteristic enzymes involved in the complete depolymerization of PHBV, the transport of oligomers, and in the conversion of the monomers into intermediates of central carbon metabolism. The transcriptomic experiments showed the activation of the glyoxylate shunt during PHBV degradation, setting the isocitrate dehydrogenase activity as regulated branching point of the carbon flow entering the tricarboxylic acid cycle. Our study also shows the potential of exploring the natural plastisphere to discover new bacteria with promising metabolic capabilities.


Asunto(s)
Bacterias , Poliésteres , Bacterias/genética , Bacterias/metabolismo , Hidroxibutiratos , Biopolímeros , Carbono/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA