Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 657, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510158

RESUMEN

The sensation of pressure allows us to feel sustained compression and body strain. While our understanding of cutaneous touch has grown significantly in recent years, how deep tissue sensations are detected remains less clear. Here, we use quantitative sensory evaluations of patients with rare sensory disorders, as well as nerve blocks in typical individuals, to probe the neural and genetic mechanisms for detecting non-painful pressure. We show that the ability to perceive innocuous pressures is lost when myelinated fiber function is experimentally blocked in healthy volunteers and that two patients lacking Aß fibers are strikingly unable to feel innocuous pressures at all. We find that seven individuals with inherited mutations in the mechanoreceptor PIEZO2 gene, who have major deficits in touch and proprioception, are nearly as good at sensing pressure as healthy control subjects. Together, these data support a role for Aß afferents in pressure sensation and suggest the existence of an unknown molecular pathway for its detection.


Asunto(s)
Canales Iónicos/fisiología , Mecanorreceptores/fisiología , Sensación/fisiología , Tacto/fisiología , Adulto , Anciano , Femenino , Humanos , Canales Iónicos/genética , Masculino , Mecanorreceptores/metabolismo , Persona de Mediana Edad , Mutación , Bloqueo Nervioso/métodos , Presión , Propiocepción/genética , Propiocepción/fisiología , Trastornos de la Sensación/diagnóstico , Trastornos de la Sensación/genética , Trastornos de la Sensación/fisiopatología , Piel/inervación , Piel/fisiopatología , Adulto Joven
2.
Neuron ; 109(2): 285-298.e5, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33186546

RESUMEN

Single-cell RNA-sequencing and in vivo functional imaging provide expansive but disconnected views of neuronal diversity. Here, we developed a strategy for linking these modes of classification to explore molecular and cellular mechanisms responsible for detecting and encoding touch. By broadly mapping function to neuronal class, we uncovered a clear transcriptomic logic responsible for the sensitivity and selectivity of mammalian mechanosensory neurons. Notably, cell types with divergent gene-expression profiles often shared very similar properties, but we also discovered transcriptomically related neurons with specialized and divergent functions. Applying our approach to knockout mice revealed that Piezo2 differentially tunes all types of mechanosensory neurons with marked cell-class dependence. Together, our data demonstrate how mechanical stimuli recruit characteristic ensembles of transcriptomically defined neurons, providing rules to help explain the discriminatory power of touch. We anticipate a similar approach could expose fundamental principles governing representation of information throughout the nervous system.


Asunto(s)
Mecanorreceptores/fisiología , Mecanotransducción Celular/fisiología , Tacto/fisiología , Ganglio del Trigémino/fisiología , Animales , Animales Recién Nacidos , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Estimulación Física/efectos adversos , Estimulación Física/métodos , Vibración/efectos adversos
3.
Nature ; 588(7837): 290-295, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33057202

RESUMEN

Henry Miller stated that "to relieve a full bladder is one of the great human joys". Urination is critically important in health and ailments of the lower urinary tract cause high pathological burden. Although there have been advances in understanding the central circuitry in the brain that facilitates urination1-3, there is a lack of in-depth mechanistic insight into the process. In addition to central control, micturition reflexes that govern urination are all initiated by peripheral mechanical stimuli such as bladder stretch and urethral flow4. The mechanotransduction molecules and cell types that function as the primary stretch and pressure detectors in the urinary tract mostly remain unknown. Here we identify expression of the mechanosensitive ion channel PIEZO2 in lower urinary tract tissues, where it is required for low-threshold bladder-stretch sensing and urethral micturition reflexes. We show that PIEZO2 acts as a sensor in both the bladder urothelium and innervating sensory neurons. Humans and mice lacking functional PIEZO2 have impaired bladder control, and humans lacking functional PIEZO2 report deficient bladder-filling sensation. This study identifies PIEZO2 as a key mechanosensor in urinary function. These findings set the foundation for future work to identify the interactions between urothelial cells and sensory neurons that control urination.


Asunto(s)
Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Células Receptoras Sensoriales/metabolismo , Vejiga Urinaria/inervación , Vejiga Urinaria/fisiología , Micción/fisiología , Urotelio/citología , Animales , Femenino , Humanos , Canales Iónicos/deficiencia , Ratones , Presión , Reflejo/fisiología , Vejiga Urinaria/citología , Vejiga Urinaria/fisiopatología , Sistema Urinario/inervación , Sistema Urinario/metabolismo , Urotelio/metabolismo
4.
Cell Rep ; 29(8): 2121-2122, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31747586

RESUMEN

Soohong et al. (2019) reveal a class of vagal afferents-defined by Piezo2 expression-that innervate the aorta and function to sense blood pressure fluctuations. Their study describes the morphologies and role of these neurons in vascular regulation.


Asunto(s)
Pezuñas y Garras , Presorreceptores , Animales , Aorta , Barorreflejo , Presión Sanguínea
5.
Neuron ; 100(6): 1491-1503.e3, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30449655

RESUMEN

Response to danger needs to be rapid and appropriate. In humans, nocifensive behaviors often precede conscious pain perception. Much is known about local spinal cord circuits for simple reflexive responses, but the mechanisms underlying more complex behaviors remain poorly understood. We now describe a brainstem circuit that controls escape responses to select noxious stimuli. Tracing experiments characterized a highly interconnected excitatory circuit involving the dorsal spinal cord, parabrachial nucleus (PBNl), and reticular formation (MdD). A combination of chemogenetic, optogenetic, and genetic ablation approaches revealed that PBNlTac1 neurons are activated by noxious stimuli and trigger robust escape responses to heat through connections to the MdD. Remarkably, MdDTac1 neurons receive excitatory input from the PBN and target both the spinal cord and PBN; activation of these neurons phenocopies the behavioral effects of PBNlTac1 neuron stimulation. These findings identify a substrate for controlling appropriate behavioral responses to painful stimuli.


Asunto(s)
Tronco Encefálico/fisiología , Vías Nerviosas/fisiología , Nociceptores/fisiología , Dolor/patología , Médula Espinal/fisiología , Adenosina Trifosfato/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Estado de Descerebración , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Optogenética , Dolor/fisiopatología , Percepción del Dolor/fisiología , Taquicininas/genética , Taquicininas/metabolismo , Transducción Genética
6.
Sci Transl Med ; 10(462)2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305456

RESUMEN

Tissue injury and inflammation markedly alter touch perception, making normally innocuous sensations become intensely painful. Although this sensory distortion, known as tactile allodynia, is one of the most common types of pain, the mechanism by which gentle mechanical stimulation becomes unpleasant remains enigmatic. The stretch-gated ion channel PIEZO2 has been shown to mediate light touch, vibration detection, and proprioception. However, the role of this ion channel in nociception and pain has not been resolved. Here, we examined the importance of Piezo2 in the cellular representation of mechanosensation using in vivo imaging in mice. Piezo2-knockout neurons were completely insensitive to gentle dynamic touch but still responded robustly to noxious pinch. During inflammation and after injury, Piezo2 remained essential for detection of gentle mechanical stimuli. We hypothesized that loss of PIEZO2 might eliminate tactile allodynia in humans. Our results show that individuals with loss-of-function mutations in PIEZO2 completely failed to develop sensitization and painful reactions to touch after skin inflammation. These findings provide insight into the basis for tactile allodynia, identify the PIEZO2 mechanoreceptor as an essential mediator of touch under inflammatory conditions, and suggest that this ion channel might be targeted for treating tactile allodynia.


Asunto(s)
Canales Iónicos/metabolismo , Dolor/metabolismo , Tacto , Animales , Capsaicina/farmacología , Enfermedad Crónica , Modelos Animales de Enfermedad , Humanos , Hiperalgesia/patología , Imagenología Tridimensional , Inflamación/complicaciones , Inflamación/patología , Canales Iónicos/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Neuronas/metabolismo , Dolor/complicaciones , Dolor/genética , Recombinación Genética/genética
7.
Neuron ; 95(4): 944-954.e4, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28817806

RESUMEN

The somatosensory system provides animals with the ability to detect, distinguish, and respond to diverse thermal, mechanical, and irritating stimuli. While there has been progress in defining classes of neurons underlying temperature sensation and gentle touch, less is known about the neurons specific for mechanical pain. Here, we use in vivo functional imaging to identify a class of cutaneous sensory neurons that are selectively activated by high-threshold mechanical stimulation (HTMRs). We show that their optogenetic excitation evokes rapid protective and avoidance behaviors. Unlike other nociceptors, these HTMRs are fast-conducting Aδ-fibers with highly specialized circumferential endings wrapping the base of individual hair follicles. Notably, we find that Aδ-HTMRs innervate unique but overlapping fields and can be activated by stimuli as precise as the pulling of a single hair. Together, the distinctive features of this class of Aδ-HTMRs appear optimized for accurate and rapid localization of mechanical pain. VIDEO ABSTRACT.


Asunto(s)
Vías Aferentes/fisiología , Cabello , Mecanorreceptores/fisiología , Nociceptores/fisiología , Células Receptoras Sensoriales/fisiología , Tacto/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Antineoplásicos Hormonales/farmacología , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Channelrhodopsins , Diterpenos/farmacología , Femenino , Cabello/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurotoxinas/farmacología , Piel/inervación , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Tamoxifeno/farmacología , Ganglio del Trigémino/diagnóstico por imagen , Ganglio del Trigémino/fisiología
8.
J Neurophysiol ; 116(1): 191-200, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27075543

RESUMEN

The mammalian superior colliculus (SC) is a midbrain structure that integrates multimodal sensory inputs and computes commands to initiate rapid eye movements. SC neurons burst with the sudden onset of a visual stimulus, followed by persistent activity that may underlie shifts of attention and decision making. Experiments in vitro suggest that circuit reverberations play a role in the burst activity in the SC, but the origin of persistent activity is unclear. In the present study we characterized an afterdepolarization (ADP) that follows action potentials in slices of rat SC. Population responses seen with voltage-sensitive dye imaging consisted of rapid spikes followed immediately by a second distinct depolarization of lower amplitude and longer duration. Patch-clamp recordings showed qualitatively similar behavior: in nearly all neurons throughout the SC, rapid spikes were followed by an ADP. Ionic and pharmacological manipulations along with experiments with current and voltage steps indicated that the ADP of SC neurons arises from Na(+) current that either persists or resurges following Na(+) channel inactivation at the end of an action potential. Comparisons of pharmacological properties and frequency dependence revealed a clear parallel between patch-clamp recordings and voltage imaging experiments, indicating a common underlying membrane mechanism for the ADP in both single neurons and populations. The ADP can initiate repetitive spiking at intervals consistent with the frequency of persistent activity in the SC. These results indicate that SC neurons have intrinsic membrane properties that can contribute to electrical activity that underlies shifts of attention and decision making.


Asunto(s)
Potenciales de la Membrana/fisiología , Neuronas/fisiología , Sodio/metabolismo , Colículos Superiores/fisiología , Animales , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo , Colículos Superiores/efectos de los fármacos , Técnicas de Cultivo de Tejidos , Imagen de Colorante Sensible al Voltaje
9.
J Neurophysiol ; 114(1): 662-76, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25995346

RESUMEN

The mammalian superior colliculus (SC) is a laminar midbrain structure that translates visual signals into commands to shift the focus of attention and gaze. The SC plays an integral role in selecting targets and ultimately generating rapid eye movements to those targets. In all mammals studied to date, neurons in the SC are arranged topographically such that the location of visual stimuli and the endpoints of orienting movements form organized maps in superficial and deeper layers, respectively. The organization of these maps is thought to underlie attentional priority by assessing which regions of the visual field contain behaviorally relevant information. Using voltage imaging and patch-clamp recordings in parasagittal SC slices from the rat, we found the synaptic circuitry of the visuosensory map in the SC imposes a strong bias. Voltage imaging of responses to electrical stimulation revealed more spread in the caudal direction than the rostral direction. Pharmacological experiments demonstrated that this asymmetry arises from GABAA receptor activation rostral to the site of stimulation. Patch-clamp recordings confirmed this rostrally directed inhibitory circuit and showed that it is contained within the visuosensory layers of the SC. Stimulation of two sites showed that initial stimulation of a caudal site can take priority over subsequent stimulation of a rostral site. Taken together, our data indicate that the circuitry of the visuosensory SC is hard-wired to give higher priority to more peripheral targets, and this property is conferred by a uniquely structured, dedicated inhibitory circuit.


Asunto(s)
Inhibición Neural/fisiología , Colículos Superiores/fisiología , Animales , Bencilaminas/farmacología , Mapeo Encefálico , Estimulación Eléctrica , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Ácido Glutámico/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Inhibición Neural/efectos de los fármacos , Técnicas de Placa-Clamp , Ácidos Fosfínicos/farmacología , Piridazinas/farmacología , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Colículos Superiores/efectos de los fármacos , Técnicas de Cultivo de Tejidos , Imagen de Colorante Sensible al Voltaje
10.
J Neurophysiol ; 113(4): 1249-59, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25411462

RESUMEN

Genetically encoded voltage sensors expand the optogenetics toolkit into the important realm of electrical recording, enabling researchers to study the dynamic activity of complex neural circuits in real time. However, these probes have thus far performed poorly when tested in intact neural circuits. Hybrid voltage sensors (hVOS) enable the imaging of voltage by harnessing the resonant energy transfer that occurs between a genetically encoded component, a membrane-tethered fluorescent protein that serves as a donor, and a small charged molecule, dipicrylamine, which serves as an acceptor. hVOS generates optical signals as a result of voltage-induced changes in donor-acceptor distance. We expressed the hVOS probe in mouse brain by in utero electroporation and in transgenic mice with a neuronal promoter. Under conditions favoring sparse labeling we could visualize single-labeled neurons. hVOS imaging reported electrically evoked fluorescence changes from individual neurons in slices from entorhinal cortex, somatosensory cortex, and hippocampus. These fluorescence signals tracked action potentials in individual neurons in a single trial with excellent temporal fidelity, producing changes that exceeded background noise by as much as 16-fold. Subthreshold synaptic potentials were detected in single trials in multiple distinct cells simultaneously. We followed signal propagation between different cells within one field of view and between dendrites and somata of the same cell. hVOS imaging thus provides a tool for high-resolution recording of electrical activity from genetically targeted cells in intact neuronal circuits.


Asunto(s)
Potenciales de Acción , Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Neuronas/fisiología , Optogenética/métodos , Potenciales Sinápticos , Secuencia de Aminoácidos , Animales , Encéfalo/citología , Encéfalo/fisiología , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Neuronas/metabolismo , Picratos/química
11.
J Neurosci ; 34(20): 6822-33, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24828636

RESUMEN

Neural circuits that translate sensory information into motor commands are organized in a feedforward manner converting sensory information into motor output. The superior colliculus (SC) follows this pattern as it plays a role in converting visual information from the retina and visual cortex into motor commands for rapid eye movements (saccades). Feedback from movement to sensory regions is hypothesized to play critical roles in attention, visual image stability, and saccadic suppression, but in contrast to feedforward pathways, motor feedback to sensory regions has received much less attention. The present study used voltage imaging and patch-clamp recording in slices of rat SC to test the hypothesis of an excitatory synaptic pathway from the motor layers of the SC back to the sensory superficial layers. Voltage imaging revealed an extensive depolarization of the superficial layers evoked by electrical stimulation of the motor layers. A pharmacologically isolated excitatory synaptic potential in the superficial layers depended on stimulus strength in the motor layers in a manner consistent with orthodromic excitation. Patch-clamp recording from neurons in the sensory layers revealed excitatory synaptic potentials in response to glutamate application in the motor layers. The location, size, and morphology of responsive neurons indicated they were likely to be narrow-field vertical cells. This excitatory projection from motor to sensory layers adds an important element to the circuitry of the SC and reveals a novel feedback pathway that could play a role in enhancing sensory responses to attended targets as well as visual image stabilization.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Retroalimentación Fisiológica/fisiología , Neuronas/fisiología , Colículos Superiores/fisiología , Sinapsis/fisiología , Animales , Femenino , Masculino , Vías Nerviosas/fisiología , Ratas , Ratas Sprague-Dawley
12.
Mol Brain ; 5: 28, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22892315

RESUMEN

BACKGROUND: Huntington's disease (HD) is an autosomal dominant neurodegenerative disease that is caused by the expansion of a polyglutamine (polyQ) stretch within Huntingtin (htt), the protein product of the HD gene. Although studies in vitro have suggested that the mutant htt can act in a potentially dominant negative fashion by sequestering wild-type htt into insoluble protein aggregates, the role of the length of the normal htt polyQ stretch, and the adjacent proline-rich region (PRR) in modulating HD mouse model pathogenesis is currently unknown. RESULTS: We describe the generation and characterization of a series of knock-in HD mouse models that express versions of the mouse HD gene (Hdh) encoding N-terminal hemaglutinin (HA) or 3xFlag epitope tagged full-length htt with different polyQ lengths (HA7Q-, 3xFlag7Q-, 3xFlag20Q-, and 3xFlag140Q-htt) and substitution of the adjacent mouse PRR with the human PRR (3xFlag20Q- and 3xFlag140Q-htt). Using co-immunoprecipitation and immunohistochemistry analyses, we detect no significant interaction between soluble full-length normal 7Q- htt and mutant (140Q) htt, but we do observe N-terminal fragments of epitope-tagged normal htt in mutant htt aggregates. When the sequences encoding normal mouse htt's polyQ stretch and PRR are replaced with non-pathogenic human sequence in mice also expressing 140Q-htt, aggregation foci within the striatum, and the mean size of htt inclusions are increased, along with an increase in striatal lipofuscin and gliosis. CONCLUSION: In mice, soluble full-length normal and mutant htt are predominantly monomeric. In heterozygous knock-in HD mouse models, substituting the normal mouse polyQ and PRR with normal human sequence can exacerbate some neuropathological phenotypes.


Asunto(s)
Alelos , Epítopos/química , Enfermedad de Huntington/metabolismo , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Péptidos/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Encéfalo/metabolismo , Encéfalo/patología , Distribución de Chi-Cuadrado , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Exones/genética , Femenino , Gliosis/metabolismo , Gliosis/patología , Hemicigoto , Heterocigoto , Humanos , Proteína Huntingtina , Enfermedad de Huntington/patología , Lipofuscina/metabolismo , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Unión Proteica , Expansión de Repetición de Trinucleótido/genética
13.
Genesis ; 47(10): 680-7, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19621436

RESUMEN

The Hox family of transcription factors are expressed at different domains along the rostrocaudal (R-C) body axis during development. To examine the function of Hoxc8 and Hoxc9 in specific cell types and at different developmental times, we have generated and characterized loxP flanked (floxed) Hoxc8 and Hoxc8-->Hoxc9 replacement alleles of mice, with either GFP or LacZ reporters. Although all four alleles of mice behave like wild-type controls in motor behavioral testing, slight differences in endogenous Hox gene expression were observed among these alleles depending on the type of reporters used and the presence of Hoxc9 cDNA in the targeting constructs. The efficiency of Cre-mediated recombination was evaluated by crossing these mice with the Nestin-cre and Isl1-cre mice, and the loss of Hoxc8 expression with or without Hoxc9 misexpression was confirmed in embryonic spinal cord. In addition, an upregulation of reporter gene expression was observed after Cre-mediated recombination. These mice will be useful tools to analyze Hox gene function in a cell type-specific manner.


Asunto(s)
Alelos , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen/métodos , Proteínas de Homeodominio/genética , Animales , Femenino , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Transgénicos
14.
Nature ; 451(7174): 61-4, 2008 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-18094685

RESUMEN

Electrical microstimulation can establish causal links between the activity of groups of neurons and perceptual and cognitive functions. However, the number and identities of neurons microstimulated, as well as the number of action potentials evoked, are difficult to ascertain. To address these issues we introduced the light-gated algal channel channelrhodopsin-2 (ChR2) specifically into a small fraction of layer 2/3 neurons of the mouse primary somatosensory cortex. ChR2 photostimulation in vivo reliably generated stimulus-locked action potentials at frequencies up to 50 Hz. Here we show that naive mice readily learned to detect brief trains of action potentials (five light pulses, 1 ms, 20 Hz). After training, mice could detect a photostimulus firing a single action potential in approximately 300 neurons. Even fewer neurons (approximately 60) were required for longer stimuli (five action potentials, 250 ms). Our results show that perceptual decisions and learning can be driven by extremely brief epochs of cortical activity in a sparse subset of supragranular cortical pyramidal neurons.


Asunto(s)
Conducta Animal/fisiología , Conducta Animal/efectos de la radiación , Corteza Cerebral/fisiología , Corteza Cerebral/efectos de la radiación , Aprendizaje/fisiología , Movimiento/fisiología , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de la radiación , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Animales , Corteza Cerebral/citología , Estimulación Eléctrica , Aprendizaje/efectos de la radiación , Ratones , Óptica y Fotónica , Estimulación Luminosa , Células Piramidales/metabolismo , Células Piramidales/efectos de la radiación , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...