Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Alcohol Depend ; 260: 111320, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38723374

RESUMEN

BACKGROUND: A single administration of the opioid receptor antagonist methocinnamox (MCAM) antagonizes the antinociceptive effects of µ-opioid receptor agonists for 2 weeks or longer. Such a long duration of antagonism could necessitate the use of nonopioid drugs for treating pain in patients receiving MCAM for opioid use disorder (OUD). METHODS: The antinociceptive effects of fentanyl and nonopioid drugs were assessed in 24 male Sprague Dawley rats using a complete Freund's adjuvant (CFA) model of inflammatory pain. Twelve rats received 10mg/kg MCAM and 12 received vehicle; half (n=6) of the animals from each treatment group were treated (intraplantar) with CFA or saline. Hypersensitivity to mechanical stimulation was measured using a von Frey anesthesiometer. Fentanyl (0.01-0.1mg/kg), ketamine (17.8-56mg/kg), gabapentin (32-100mg/kg), meloxicam (3.2-10mg/kg), and ∆9-tetrahydrocannabinol (THC, 1-10mg/kg) were administered intraperitoneally and tested every 3 days in a pseudorandom order. Next, the same drugs were studied for effects on motor performance using a rotarod apparatus. RESULTS: CFA-induced hypersensitivity was attenuated by fentanyl in vehicle- but not MCAM-treated rats. THC, ketamine, and gabapentin attenuated (up to 82, 66, and 46 %, respectively) CFA-evoked mechanical hypersensitivity in both MCAM- and vehicle-treated rats. Meloxicam failed to alter CFA-evoked mechanical hypersensitivity in either group. Fentanyl, THC, gabapentin, and meloxicam did not affect motor performance in either group whereas ketamine impaired motor performance in both groups (up to 71 % reduction in latency to fall). CONCLUSIONS: These data suggest that ketamine, gabapentin, and THC could be effective for treating inflammatory pain under conditions of long term µ-opioid receptor antagonism.

2.
Behav Pharmacol ; 35(4): 161-171, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38660819

RESUMEN

Cannabis is a pharmacologically complex plant consisting of hundreds of potentially active compounds. One class of compounds present in cannabis that has received little attention are terpenes. Traditionally thought to impart aroma and flavor to cannabis, it has become increasingly recognized that terpenes might exert therapeutic effects themselves. Several recent reports have also indicated terpenes might behave as cannabinoid type 1 (CB1) receptor agonists. This study aimed to investigate whether several terpenes present in cannabis produce discriminative stimulus effects similar to or enhance the effects of Δ 9 -tetrahydrocannabinol (THC). Subsequent experiments explored other potential cannabimimetic effects of these terpenes. Rats were trained to discriminate THC from vehicle while responding under a fixed-ratio 10 schedule of food presentation. Substitution testing was performed with the CB receptor agonist JWH-018 and the terpenes linalool, limonene, γ-terpinene and α-humulene alone. Terpenes were also studied in combination with THC. Finally, THC and terpenes were tested in the tetrad assay to screen for CB1-receptor agonist-like effects. THC and JWH-018 dose-dependently produced responding on the THC-paired lever. When administered alone, none of the terpenes produced responding predominantly on the THC-paired lever. When administered in combination with THC, none of the terpenes enhanced the potency of THC, and in the case of α-humulene, decreased the potency of THC to produce responding on the THC-paired lever. While THC produced effects in all four tetrad components, none of the terpenes produced effects in all four components. Therefore, the terpenes examined in this report do not have effects consistent with CB1 receptor agonist properties in the brain.


Asunto(s)
Cannabis , Dronabinol , Terpenos , Animales , Terpenos/farmacología , Ratas , Dronabinol/farmacología , Masculino , Cannabinoides/farmacología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/metabolismo , Indoles/farmacología , Naftalenos/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Ratas Sprague-Dawley , Relación Dosis-Respuesta a Droga , Aprendizaje Discriminativo/efectos de los fármacos , Discriminación en Psicología/efectos de los fármacos
3.
Proc Natl Acad Sci U S A ; 120(3): e2214700120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626562

RESUMEN

KCNH2 encodes hERG1, the voltage-gated potassium channel that conducts the rapid delayed rectifier potassium current (IKr) in human cardiac tissue. hERG1 is one of the first channels expressed during early cardiac development, and its dysfunction is associated with intrauterine fetal death, sudden infant death syndrome, cardiac arrhythmia, and sudden cardiac death. Here, we identified a hERG1 polypeptide (hERG1NP) that is targeted to the nuclei of immature cardiac cells, including human stem cell-derived cardiomyocytes (hiPSC-CMs) and neonatal rat cardiomyocytes. The nuclear hERG1NP immunofluorescent signal is diminished in matured hiPSC-CMs and absent from adult rat cardiomyocytes. Antibodies targeting distinct hERG1 channel epitopes demonstrated that the hERG1NP signal maps to the hERG1 distal C-terminal domain. KCNH2 deletion using CRISPR simultaneously abolished IKr and the hERG1NP signal in hiPSC-CMs. We then identified a putative nuclear localization sequence (NLS) within the distal hERG1 C-terminus, 883-RQRKRKLSFR-892. Interestingly, the distal C-terminal domain was targeted almost exclusively to the nuclei when overexpressed HEK293 cells. Conversely, deleting the NLS from the distal peptide abolished nuclear targeting. Similarly, blocking α or ß1 karyopherin activity diminished nuclear targeting. Finally, overexpressing the putative hERG1NP peptide in the nuclei of HEK cells significantly reduced hERG1a current density, compared to cells expressing the NLS-deficient hERG1NP or GFP. These data identify a developmentally regulated polypeptide encoded by KCNH2, hERG1NP, whose presence in the nucleus indirectly modulates hERG1 current magnitude and kinetics.


Asunto(s)
Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go , Miocitos Cardíacos , Animales , Humanos , Ratas , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Células HEK293 , Miocitos Cardíacos/metabolismo , Péptidos/metabolismo
4.
Behav Pharmacol ; 32(4): 278-285, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33491991

RESUMEN

Intravenous drug self-administration remains the 'gold standard' for assessing abuse liability. Failure of a drug to maintain self-administration might indicate the absence of positive reinforcing effects but might also indicate the presence of aversive effects. Sensitivity to aversive and punishing effects of drugs (as well as nondrug stimuli) might collectively determine the likelihood of use, abuse and relapse. Using a choice procedure, this study compared the effects of remifentanil (mu opioid receptor agonist; 0.001-0.01 mg/kg/infusion) and histamine (H1-4 receptor agonist; 0.32-3.2 mg/kg/infusion), alone and in mixtures, to test the hypothesis that remifentanil/histamine mixtures are less reinforcing compared with remifentanil alone and less punishing compared with histamine alone. Male Sprague-Dawley rats (n = 10) chose between an intravenous infusion + a pellet and a pellet alone. Rats were indifferent to saline, chose remifentanil + a pellet over a pellet alone, and chose a pellet alone over histamine + a pellet. The effects of remifentanil/histamine mixtures generally were different from the constituent doses of histamine alone but not from remifentanil alone. A mixture containing 3.2 mg/kg/infusion histamine and either 0.001 or 0.0032 mg/kg/infusion remifentanil was not different from saline but was different from the effects of the constituent dose, insofar as choice increased compared with 3.2 mg/kg/infusion histamine alone and decreased compared with 0.001 or 0.0032 mg/kg/infusion remifentanil alone. Reinforcing doses of remifentanil combined with punishing doses of histamine can yield mixtures that are neither preferred nor avoided, offering 'proof-of-principle' for using drug mixtures to avoid adverse effects of opioid receptor agonists.


Asunto(s)
Conducta de Elección/efectos de los fármacos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Histamina/farmacología , Refuerzo en Psicología , Remifentanilo , Autoadministración/psicología , Analgésicos Opioides/efectos adversos , Analgésicos Opioides/farmacología , Animales , Conducta Animal/efectos de los fármacos , Formas de Dosificación , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Composición de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Agonistas de los Receptores Histamínicos/farmacología , Infusiones Intravenosas/métodos , Ratas , Receptores Opioides mu/agonistas , Remifentanilo/efectos adversos , Remifentanilo/farmacología
5.
J Pharmacol Exp Ther ; 371(2): 507-516, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31439807

RESUMEN

A novel µ-opioid receptor antagonist, methocinnamox (MCAM), attenuates some abuse-related and toxic effects of opioids. This study further characterized the pharmacology of MCAM in separate groups of rats using procedures to examine antinociception, gastrointestinal motility, and withdrawal in morphine-dependent rats. Antinociceptive effects of opioid receptor agonists were measured before and after MCAM (1-10 mg/kg) using warm water tail withdrawal and sensitivity to mechanical stimulation in inflamed paws (complete Freund's adjuvant). Before MCAM, morphine, fentanyl, and the κ-opioid receptor agonist spiradoline dose dependently increased tail-withdrawal latency from 50°C water; MCAM attenuated the antinociceptive effects of morphine and fentanyl, but not spiradoline. Morphine increased sensitivity to mechanical stimulation and decreased gastrointestinal motility, and MCAM blocked both effects. These antagonist effects of 10 mg/kg MCAM were persistent, lasting for 2 weeks or longer. Withdrawal emerged after discontinuation of morphine treatment or administration of 10 mg/kg MCAM or 17.8 mg/kg naloxone; other than the day of antagonist administration when withdrawal signs were greater in rats that received antagonist compared with rats that received vehicle, there was no difference among groups in directly observable withdrawal signs or decreased body weight. These results confirm that MCAM is a selective µ-opioid receptor antagonist with an exceptionally long duration of action, likely due to pseudoirreversible binding. Despite its sustained antagonist effects, the duration of withdrawal precipitated by MCAM is not different from that precipitated by naloxone, suggesting that the long duration of antagonism provided by MCAM could be particularly effective for treating opioid abuse and overdose. SIGNIFICANCE STATEMENT: The opioid receptor antagonist MCAM attenuates some abuse-related and toxic effects of opioids. This study demonstrates that MCAM selectively antagonizes multiple effects mediated by µ-opioid receptor agonists for 2 weeks or longer, and like naloxone, MCAM precipitates withdrawal in morphine-dependent rats. Despite this persistent antagonism, withdrawal signs precipitated by MCAM are not significantly different from signs precipitated by naloxone or occurring after discontinuation of morphine, suggesting that using MCAM for opioid abuse or overdose would not produce sustained withdrawal.


Asunto(s)
Analgésicos Opioides/administración & dosificación , Cinamatos/administración & dosificación , Derivados de la Morfina/administración & dosificación , Antagonistas de Narcóticos/administración & dosificación , Receptores Opioides mu/agonistas , Receptores Opioides mu/antagonistas & inhibidores , Síndrome de Abstinencia a Sustancias/prevención & control , Analgésicos Opioides/efectos adversos , Animales , Cinamatos/metabolismo , Relación Dosis-Respuesta a Droga , Masculino , Derivados de la Morfina/metabolismo , Antagonistas de Narcóticos/metabolismo , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Receptores Opioides mu/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...