Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Sci Rep ; 14(1): 10566, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719873

RESUMEN

Conventional wastewater treatment processes are often unable to remove antibiotics with resistant compounds and low biological degradation. The need for advanced and sustainable technologies to remove antibiotics from water sources seems essential. In this regard, the effectiveness of a spinning disc photocatalytic reactor (SDPR) equipped with a visible light-activated Fe3O4@SiO2-NH2@CuO/ZnO core-shell (FSNCZ CS) thin film photocatalyst was investigated for the decomposition of amoxicillin (AMX), a representative antibiotic. Various characterization techniques, such as TEM, FESEM, EDX, AFM, XRD, and UV-Vis-DRS, were employed to study the surface morphology, optoelectronic properties, and nanostructure of the FSNCZ CS. Key operating parameters such as irradiation time, pH, initial AMX concentration, rotational speed, and solution flow rate were fine-tuned for optimization. The results indicated that the highest AMX decomposition (98.7%) was attained under optimal conditions of 60 min of irradiation time, a rotational speed of 350 rpm, a solution flow rate of 0.9 L/min, pH of 5, and an initial AMX concentration of 20 mg/L. Moreover, during the 60 min irradiation time, more than 69.95% of chemical oxygen demand and 61.2% of total organic carbon were removed. After the photocatalytic decomposition of AMX, there is a substantial increase in the average oxidation state and carbon oxidation state in SDPR from 1.33 to 1.94 and 3.2, respectively. Active species tests confirmed that ·OH and ·O2- played a dominant role in AMX decomposition. The developed SDPR, which incorporates a reusable and robust FSNCZ CS photocatalyst, demonstrates promising potential for the decomposition of organic compounds.


Asunto(s)
Amoxicilina , Antibacterianos , Luz , Nanoestructuras , Catálisis , Antibacterianos/química , Nanoestructuras/química , Amoxicilina/química , Contaminantes Químicos del Agua/química , Cobre/química , Óxido de Zinc/química , Dióxido de Silicio/química , Purificación del Agua/métodos
2.
Sci Total Environ ; 925: 171559, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38458438

RESUMEN

The pervasive presence of poly- and perfluoroalkyl substances (PFAS) in diverse products has led to their introduction into wastewater systems, making wastewater treatment plants (WWTPs) significant PFAS contributors to the environment. Despite WWTPs' efforts to mitigate PFAS impact through physicochemical and biological means, concerns persist regarding PFAS retention in generated biosolids. While numerous review studies have explored the fate of these compounds within WWTPs, no study has critically reviewed their presence, transformation mechanisms, and partitioning within the sludge. Therefore, the current study has been specifically designed to investigate these aspects. Studies show variations in PFAS concentrations across WWTPs, highlighting the importance of aqueous-to-solid partitioning, with sludge from PFOS and PFOA-rich wastewater showing higher concentrations. Research suggests biological mechanisms such as cytochrome P450 monooxygenase, transamine metabolism, and beta-oxidation are involved in PFAS biotransformation, though the effects of precursor changes require further study. Carbon chain length significantly affects PFAS partitioning, with longer chains leading to greater adsorption in sludge. The wastewater's organic and inorganic content is crucial for PFAS adsorption; for instance, higher sludge protein content and divalent cations like calcium and magnesium promote adsorption, while monovalent cations like sodium impede it. In conclusion, these discoveries shed light on the complex interactions among factors affecting PFAS behavior in biosolids. They underscore the necessity for thorough considerations in managing PFAS presence and its impact on environmental systems.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Aguas del Alcantarillado/química , Biosólidos , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis
3.
Chemosphere ; 349: 140972, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38114023

RESUMEN

Pharmaceutical substances in the ecosystem pose a notable hazard to human and aquatic organism well-being. The occurrence of ciprofloxacin (CIP) within water sources or the food chain can perturb plant biochemical processes and induce drug resistance in both humans and animals. Therefore, effective removal is imperative prior to environmental discharge. This study introduces a Novel Carbohydrate-Based Nanocomposite (Fe3O4/MOF/AmCs-Alg) as a proficient photocatalytic agent for degrading CIP in aqueous solutions. The fabricated nanocomposite underwent characterization using FTIR, XRD, FESEM, DRS, and VSM techniques. The analyses conducted verified the successful synthesis of the Fe3O4/MOF/AmCs-Alg nanocomposite. Utilizing the optimized parameters (pH = 5, nanocomposite dose = 0.4 g/L, CIP concentration = 10 mg/L, light intensity = 75 mW/cm2, and a duration of 45min), the Fe3O4/MOF/AmCs-Alg/Vis nanocomposite demonstrated an impressive CIP degradation efficiency of 95.85%. Under optimal experiment conditions, CIP removal efficiency in tap water and treated wastewater samples was 91.27% and 76.78%, respectively. Furthermore, the total organic carbon (TOC) analysis indicated a mineralization rate of 51.21% for CIP. Trapping studies demonstrated that the superoxide radical (O2°-) had a notable contribution to the breakdown of CIP. In summary, the Fe3O4/MOF/AmCs-Alg/Vis system offers numerous benefits, encompassing effective degradation capabilities, effortless catalyst retrieval, and remarkable nanocomposite reusability.


Asunto(s)
Ciprofloxacina , Nanocompuestos , Humanos , Ciprofloxacina/química , Ecosistema , Agua/química , Luz , Nanocompuestos/química , Catálisis
4.
Sci Rep ; 13(1): 17858, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857811

RESUMEN

Exposure to particulate matter (PM) can be considered as a factor affecting human health. The aim of this study was to investigate the concentration of PM2.5 and heavy metals and their influence on survival of A549 human lung cells in exposure to PM2.5 breathing air of Ahvaz city. In order to assess the levels of PM2.5 and heavy metals, air samples were collected from 14 sampling stations positioned across Ahvaz city during both winter and summer seasons. The concentration of heavy metals was determined using ICP OES. Next, the MTT assay [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] was employed to ascertain the survival rate of A549 cells. The findings from this research demonstrated that average PM2.5 of the study period was (149.5 µg/m3). Also, the average concentration of PM2.5 in the urban area in winter and summer was (153.3- and 106.9 µg/m3) and in the industrial area this parameter was (191.6 and 158.3 µg/m3). The average concentration of metals (ng/m3) of urban areas against industrial, Al (493 vs. 485), Fe (536 vs. 612), Cu (198 vs. 212), Ni (128 vs. 129), Cr (48.5 vs. 54), Cd (118 vs. 124), Mn (120 vs. 119), As (51 vs. 67), Hg (37 vs. 50), Zn (302 vs. 332) and Pb (266 vs. 351) were obtained. The results of the MTT assay showed that the highest percentage of cell survival according to the exposure concentration was 25 > 50 > 100 > 200. Also, the lowest percentage of survival (58.8%) was observed in the winter season and in industrial areas with a concentration of 200 µg/ml. The carcinogenic risk assessment of heavy metals indicated that except for Cr, whose carcinogenicity was 1.32E-03, other metals were in the safe range (10-4-10-6) for human health. The high concentration of PM2.5 and heavy metals can increase respiratory and cardiovascular diseases and reduce the public health level of Ahvaz citizens.


Asunto(s)
Contaminantes Atmosféricos , Metales Pesados , Humanos , Material Particulado/toxicidad , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/toxicidad , Metales Pesados/análisis , Estaciones del Año , Medio Oriente , Medición de Riesgo , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , China
5.
J Environ Health Sci Eng ; 21(2): 463-473, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37869596

RESUMEN

Purpose: Pollution of the environment with all kinds of plastics has become a growing problem. The problem of microplastics is mainly due to the absorption of stable organic pollutants and metals into them, and as a result, their environmental toxicity increases. The main purpose of this study is to investigate the appropriate and efficient methods of removing microplastics from aqueous environments through a systematic review. Methods: Present study designed according to PRISMA guidelines. Two independent researchers followed all process from search to final analysis, for the relevant studies using international databases of PubMed, Scopus and ISI/WOS (Web of Science), without time limit. The search strategy developed based on the main axis of "microplastics", "aqueous environments" and "removal". This research was carried out from 2017 until the March of 2022. All relevant observational, analytical studies, review articles, and a meta-analysis were included. Results: Through a comprehensive systematic search we found 2974 papers, after running the proses of refining, 80 eligible papers included to the study. According to the results of the review, the methods of removing microplastics from aquatic environments were divided to physical (12), chemical (18), physicochemical (27), biological (12) and integrated (11) methods. In different removal methods, the most dominant group of studied microplastics belonged to the four groups of polyethylene (PE), polystyrene (PS), polypropylene (PP) and polyethylene tetra phthalate (PET). Average removal efficiency of microplastics in different processes in each method was as: physical method (73.76%), chemical method (74.38%), physicochemical method (80.44%), biological method (75.23%) and integrated method (88.63%). The highest removal efficiency occurred in the processes based on the integrated method and the lowest efficiency occurred in the physical method. In total, 80% of the studies were conducted on a laboratory scale, 18.75% on a full scale and 1.25% on a pilot scale. Conclusion: According to the findings; different processes based on physical, chemical, physicochemical, biological and integrated methods are able to remove microplastics with high efficiency from aqueous environments and in order to reduce their hazardous effects on health and environment, these processes can be easily used.

6.
Chemosphere ; 344: 140325, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37797896

RESUMEN

In this work, g-C3N5/CdS dendrite/AgNPs nanocomposite was synthesized using a mixed method consisting of hydrothermal, ultrasonic and chemistry reduction with sodium borohydride. The characterization of the as-prepared nanocomposite was done using infrared spectroscopy, X-ray, scanning electron microscopy, transmission electron microscopy, BET, and DRS methods was performed. The DRS results showed that the g-C3N5/CdS dendrite/AgNPs nanocomposite nanocomposite has a band gap of 1.08 eV. This band gap indicates the good capability of this nanocomposite as a photocatalyst. Accordingly, the photocatalytic degradation of chlorpyrifos (CPS) in was performed in an aqueous solution of the synthesized nanocomposite. The results showed that almost 95.3% of this poison, a concentration of 50 mg L-1 was degraded in the presence of 0.05 g L-1 of nanocomposite at pH = 5 in a 60 min. Hydroxide radicals and holes play a significant role in the photocatalytic process. The reusability of the nanocomposite with excellent performance in the degradation of photocatalytic toxins caused by the reduction in the electron-hole recombination and the high surface area of the nanocomposite are among the unique features of this work.


Asunto(s)
Cloropirifos , Nanopartículas del Metal , Nanocompuestos , Plata/química , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Catálisis , Nanocompuestos/química
7.
Sci Rep ; 13(1): 16185, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758793

RESUMEN

Antibiotics are resistant compounds with low biological degradation that generally cannot be removed by conventional wastewater treatment processes. The use of yolk-shell nanostructures in spinning disc photocatalytic reactor (SDPR) enhances the removal efficiency due to their high surface-to-volume ratio and increased interaction between catalyst particles and reactants. The purpose of this study is to investigate the SDPR equipped to Fe3O4@void@CuO/ZnO yolk-shell thin film nanostructure (FCZ YS) in the presence of visible light illumination in the photocatalytic degradation of amoxicillin (AMX) from aqueous solutions. Stober, co-precipitation, and self-transformation methods were used for the synthesis of FCZ YS thin film nanostructure and the physical and chemical characteristics of the catalyst were analyzed by XRD, VSM,, EDX, FESEM, TEM, AFM, BET, contact angle (CA), and DRS. Then, the effect of different parameters including pH (3-11), initial concentration of AMX (10-50 mg/L), flow rate (10-25 mL/s) and rotational speed (100-400 rpm) at different times in the photocatalytic degradation of AMX were studied. The obtained results indicated that the highest degradation efficiency of 97.6% and constant reaction rate of AMX were obtained under LED visible light illumination and optimal conditions of pH = 5, initial AMX concentration of 30 mg/L, solution flow rate of 15 mL/s, rotational speed of 300 rpm and illumination time of 80 min. The durability and reusability of the nanostructure were tested, that after 5 runs had a suitable degradation rate. Considering the appropriate efficiency of amoxicillin degradation by FCZ YS nanostructure, the use of Fe3O4@void@CuO/ZnO thin film in SDPR is suggested in water and wastewater treatment processes.

8.
Sci Rep ; 13(1): 16287, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770590

RESUMEN

In this research, the photocatalytic degradation of CIP from aqueous solutions using CQD decorated on N-Cu co-doped titania (NCuTCQD) was made during two synthesis steps by sol-gel and hydrothermal methods. The fabricated catalysts were analyzed using various techniques, including XRD, FT-IR, BET, FESEM, EDX, and DRS. The results showed that N and Cu atoms were doped on TiO2 and CQD was well deposited on NCuT. The investigation of effective operational parameters demonstrated that the complete removal of ciprofloxacin (CIP: 20 mg/L) could be achieved at pH 7.0, NCuTCQD4wt%: 0.8 g/L, and light intensity: 100 mW/cm2 over 60 min reaction time. The O2•- and OH˙ radicals were identified as the primary reactive species during the decontamination process. The synthesized photocatalyst could be recycled after six consecutive cycles of CIP decomposition with an insignificant decrease in performance. Pharmaceutical wastewater was treated through the optimum degradation conditions which showed the photocatalytic degradation eliminated 89% of COD and 75% of TOC within 180 min. In the effluent toxicity evaluation, the EC50 values for treated and untreated pharmaceutical wastewater increased from 62.50% to 140%, indicating that the NCuTCQD4wt%/Vis system can effectively reduce the toxic effects of pharmaceutical wastewater on aquatic environments.


Asunto(s)
Ciprofloxacina , Contaminantes Químicos del Agua , Ciprofloxacina/toxicidad , Aguas Residuales/toxicidad , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis , Luz , Catálisis , Preparaciones Farmacéuticas
9.
J Environ Manage ; 345: 118755, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716197

RESUMEN

In this study, a number of leaching solutions (H2SO4, CuSO4 and NaCl) and an electrochemical method were used together for the separation of Cu from waste printed circuit boards. Secondly, the magnetic-MOF(Cu) was synthesized using the Cu recovered from waste printed circuit boards. Thereafter, TiO2/mag-MOF(Cu) composite was prepared and its photocatalytic activity was assessed in the photo degradation of two prominent organophosphorus pesticides, namely malathion (MTN) and diazinon (DZN). The catalytic structure of the MOF-based composite was fully characterized by various analyses such as XRD, SEM, EDAX, FT-IR, VSM and UV-vis. The obtained analyses confirmed the successful synthesis of TiO2/mag-MOF(Cu) composite. The synthesized composite exhibited highly efficient in the degradation of both pollutants under the following conditions: pH 7, contaminant concentration 1 mg/L, the catalyst dosage of 0.4 g/L, visible light intensity 75 mW/cm2 and reaction time of 45 min. First order kinetic model was best suited with the experimental results (R2: 0.97-0.99 for different MTN and DZN concentrations). Trapping studies revealed that superoxide radicals (O2•-) played an important role during the degradation process. Furthermore, the catalyst demonstrated a superb recovery as well as high stability over five cyclic runs of reuse. In addition, the total organic carbon (TOC) analysis showed over 83% and 85% mineralization for MTN and DZN, respectively. The combined system of TiO2/mag-MOF(Cu)/Vis also exhibited a great level of efficiency and feasibility in the treatment of tap water and treated wastewater samples. It is concluded that TiO2/mag-MOF(Cu) could be used as an excellent catalyst for the photodegradation of MTN and DZN in aqueous solution.


Asunto(s)
Nanocompuestos , Plaguicidas , Cobre , Compuestos Organofosforados , Espectroscopía Infrarroja por Transformada de Fourier , Metales , Diazinón , Malatión , Luz
10.
Heliyon ; 9(7): e18172, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37519670

RESUMEN

In this study, we synthesized rGO/Fe0/Fe3O4/TiO2 nanocomposite according to Hummer's, and straightforward sol-gel method. The FESEM, EDX, TEM, FT-IR, XRD, BET, UV spectra, and VSM analysis were applied to determine the catalyst properties. Optimization of influence parameters on photocatalytic process performance to penicillin G degradation in aqueous media. pH (4-8), nanocomposite dose (10-20 mg/L), reaction time (30-60 min), and penicillin G concentration (50-100 mg/L) were optimized via central composite design. In the optimum condition of PCP, supplementary studies were done. As a result of the analysis, the nanocomposite was well synthesized and displayed superior photocatalytic properties for degrading organic pollutants. In addition to being magnetically separable, the synthesized rGO/Fe0/Fe3O4/TiO2 nanocomposite exhibits high recyclability up to 5 times. The quadratic model of optimization is based on the adjusted R2(0.99), and predicated R2(0.97) suggested. According to the analysis of variance test, the model was significant (F-Value = 162.95, P-Value = 0.0001). Photocatalytic process is most efficiently decomposed at pH = 6.5, catalyst dose = 18.5 mg/L, reaction time = 59.1 min, and penicillin G concentration = 52 mg/L (efficiency = 96%). The chemical oxygen demand and total organic carbon decrease were 78, and 65%. The photolysis and adsorption mechanism as a single mechanism had lower performance in penicillin G degradation. Benzocaine had the greatest effect on reducing the efficiency of the process as a radical scavenger. The °OH, h+, and O2●- were the main reactive oxidant species in penicillin G removal. Phenoxyacetaldehyde, Acetanilide, Diacetamate, Phenylalanylglycine, N-Acetyl-l-phenylalanine, Diformyldapsone, and Succisulfone were the main intermediates in penicillin G degradation. The results indicated the photocatalytic process with rGO/Fe0/Fe3O4/TiO2 nanocomposite on a laboratory scale has good efficiency in removing penicillin G antibiotic. The application of real media requires further studies.

11.
RSC Adv ; 13(25): 17121-17129, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37304783

RESUMEN

A comparative study was performed to estimate biogas production from sludge produced by organic and inorganic chemically enhanced primary treatments (CEPTs). To this end, the effects of two coagulants, polyaluminum chloride (PACl) and Moringa oleifera (MO), on CEPT and biogas production in anaerobic digestion were surveyed within an incubation period of 24 days. The optimal dosage and pH of PACl and MO were optimized in terms of sCOD, TSS and VS parameters in the CEPT process. Next, the digestion performance of anaerobic digestion reactors fed with sludge obtained from PACl and MO coagulants at a batch mesophilic reactor (37 ± 1 °C) was surveyed from the biogas production, volatile solid reduction (VSR) and Gompertz model. At the optimal conditions (pH = 7 and dosage = 5 mg L-1), the removal efficiency of COD, TSS and VS in CEPT assisted with PACL was 63, 81 and 56%, respectively. Moreover, CEPT assisted with MO led to the removal efficiency of COD, TSS and VS until 55, 68 and 25%, respectively. The highest methane yield (0.598 L gVS removed-1) was obtained in an anaerobic digestion reactor with sludge from the MO coagulant. The anaerobic digestion of CEPT sludge instead of primary sludge resulted in higher sCOD removal efficiency, and 43-50% of sCOD was observed compared with the removal of 32% for the primary sludge. Furthermore, the high coefficient of determination (R2) demonstrated the trustworthy predictive precision of the modified Gompertz model with actual data. The combination of CEPT and anaerobic digestion, especially using natural coagulants, provides a cost-effective and practical way to increase BMP from primary sludge.

12.
Heliyon ; 9(6): e17357, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37383194

RESUMEN

Shahryar city regions with various land uses had their outdoor air concentrations of PM2.5-bound PAHs determined. Totally, 32 samples were taken - eight samples from the industrial region air (IS), eight samples from the high-traffic urban regions air (HTS), eight samples from the air of commercial regions (CS), and eight samples from residential areas (RS), which were analyzed by GC-MS. According to the study's findings, in the outdoor air of IS, HTS, CS, and RS, there were mean Æ©PAHs concentrations of 23.25 ± 20.22, 38.88 ± 26.53, 6.97 ± 4.26, and 4.48 ± 3.13 ng/m3, respectively. As comparison to CS and RS, mean concentration of Æ©PAHs in samples from HTS and IS was substantially greater (p < 0.05). Using the Unmix.6 receptor model, sources of PAHs in the air of Shahryar were allocated. The model's results show that 42% of PAHs come from diesel vehicles and industrial activities, 36% from traffic and other transportation sources, and 22% from heating sources and coal burning. The carcinogenicity suffering resulting from exposure to PAHs was as follows: This value for children of the ingestion, inhalation pathways and dermal contact is (1.90 × 10-6-1.38 × 10-4), (5.5 × 10-11-2.67 × 10-9) and (2.36 × 10-6-1.72 × 10-4), respectively. Also, for adults were (1.47 × 10-6 - 1.07 × 10-4), (1.14 × 10-10 - 5.27 × 10-9) and (3.68 × 10-6- 2.87 × 10-4), respectively. In general, the analyzed region's carcinogenicity risk estimates fell within the range of acceptable limit.

13.
Heliyon ; 9(6): e16607, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37251481

RESUMEN

The surveillance of wastewater treatment plant (WWTP) as the end point of SARS-CoV-2 shed from infected people arise a speculation on transmission of this virus of concern from WWTP in epidemic period. To this end, the present study was developed to comprehensively investigate the presence of SARS-CoV-2 in raw wastewater, effluent and air inhaled by workers and employee in the largest WWTP in Tehran for one-year study period. The monthly raw wastewater, effluent and air samples of WWTP were taken and the SARS-CoV-2 RNA were detected using QIAamp Viral RNA Mini Kit and real-time RT-PCR assay. According to results, the speculation on the presence of SARS-CoV-2 was proved in WWTP by detection this virus in raw wastewater. However, no SARS-CoV-2 was found in both effluent and air of WWTP; this presents the low or no infection for workers and employee in WWTP. Furthermore, further research are needed for detection the SARS-CoV-2 in solid and biomass produced from WWTP processes due to flaks formation, followed by sedimentation in order to better understand the wastewater-based epidemiology and preventive measurement for other epidemics probably encountered in the future.

14.
Environ Sci Pollut Res Int ; 30(30): 75349-75368, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37219776

RESUMEN

Climate change can increase the spread of infectious diseases and public health concerns. Malaria is one of the endemic infectious diseases of Iran, whose transmission is strongly influenced by climatic conditions. The effect of climate change on malaria in the southeastern Iran from 2021 to 2050 was simulated by using artificial neural networks (ANNs). Gamma test (GT) and general circulation models (GCMs) were used to determine the best delay time and to generate the future climate model under two distinct scenarios (RCP2.6 and RCP8.5). To simulate the various impacts of climate change on malaria infection, ANNs were applied using daily collected data for 12 years (from 2003 to 2014). The future climate of the study area will be hotter by 2050. The simulation of malaria cases elucidated that there is an intense increasing trend in malaria cases under the RCP8.5 scenario until 2050, with the highest number of infections occurring in the warmer months. Rainfall and maximum temperature were identified as the most influential input variables. Optimum temperatures and increased rainfall provide a suitable environment for the transmission of parasites and cause an intense increase in the number of infection cases with a delay of approximately 90 days. ANNs were introduced as a practical tool for simulating the impact of climate change on the prevalence, geographic distribution, and biological activity of malaria and for estimating the future trend of the disease in order to adopt protective measures in endemic areas.


Asunto(s)
Enfermedades Transmisibles , Malaria , Humanos , Incidencia , Cambio Climático , Malaria/epidemiología , Redes Neurales de la Computación , Temperatura
15.
Sci Rep ; 13(1): 4000, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899090

RESUMEN

In this study, toluene and ethylbenzene were degraded in the photocatalytic-proxone process using BiOI@NH2-MIL125(Ti)/Zeolite nanocomposite. The simultaneous presence of ozone and hydrogen peroxide is known as the proxone process. Nanocomposite Synthesis was carried out using the solvothermal method. Inlet airflow, ozone concentrations, H2O2 concentrations, relative humidity, and initial pollutants concentrations were studied. The nanocomposite was successfully synthesized based on FT-IR, BET, XRD, FESEM, EDS element mapping, UV-Vis spectra and TEM analysis. A flow rate of 0.1 L min-1, 0.3 mg min-1 of ozone, 150 ppm of hydrogen peroxide, 45% relative humidity, and 50 ppmv of pollutants were found to be optimal operating conditions. Both pollutants were degraded in excess of 95% under these conditions. For toluene and ethylbenzene, the synergistic of mechanisms effect coefficients were 1.56 and 1.76, respectively. It remained above 95% efficiency 7 times in the hybrid process and had good stability. Photocatalytic-proxone processes were evaluated for stability over 180 min. The remaining ozone levels in the process was insignificant (0.01 mg min-1). The CO2 and CO production in the photocatalytic-proxone process were 58.4, 5.7 ppm for toluene and 53.7, and 5.5 ppm for ethylbenzene respectively. Oxygen gas promoted and nitrogen gas had an inhibitory effect on the effective removal of pollutants. During the pollutants oxidation, various organic intermediates were identified.

16.
Sci Rep ; 12(1): 20336, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434119

RESUMEN

This study investigated the recycling of freshly-smoked cigarette butts (FCBs) and unsmoked cigarette filters (UCFs) into a cellulose acetate (CA) membrane. The both samples were prepared by means of a combination of seven cigarette brands, and the phase inversion method was used to recycle each sample into a membrane using N-methyl-2-pyrrolidone. The efficiency of the prepared membranes for the removal of chromium, cadmium, and lead from an aqueous solution in a forward osmosis reactor was investigated. The results showed that the both membranes had a smooth surface and macrovoids. The flux of the prepared membranes from the UCFs and FCBs recycling were 14.8 and 13.2 LMH, respectively. The porosity and reverse salt of the UCFs membrane were 61% and 3.5 gMH, while those for FCBs membrane were 58% and 3.9 gMH. The observed metal removal efficiency of the both membranes was in the range of 85 to 90%. However, increasing the concentration of metals up to five times caused a slight decrease in the removal efficiency (less than 5%).


Asunto(s)
Metales Pesados , Productos de Tabaco , Membranas Artificiales , Celulosa , Agua , Humo
17.
J Environ Health Sci Eng ; 20(2): 937-952, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36406604

RESUMEN

One of the popular process in volatile organic compounds removal in gas phase is advanced oxidation process. We in this research, synthesized BiOI@NH2-MIL125(Ti)/Zeolite nanocomposite as a novel nanocomposite to degradation of benzene in hybrid advanced oxidation process. The nanocomposite synthesized via solvothermal method. The effect of airflow, ozone gas concentration, hydrogen peroxide concentration, relative humidity and initial benzene concentration are the main parameters in the UV/O3/H2O2/ nanocomposite hybrid process that were studied. The characterization by XRD, FT-IR, FESEM, EDS element mapping, TEM, BET, and UV-vis spectra indicated that nanocomposite were well synthesized. Optimal operating conditions of the process were determined at air flow of 0.1 l/min, ozone concentration of 0.3 mg/min, hydrogen peroxide concentration of 150 ppm, relative humidity of 45 ± 3% and benzene concentration of 50 ppmv. Under these conditions, more than 99% of benzene was degraded. The synergistic effect coefficient of the mechanisms is 1.53. The nanocomposite had good stability in the hybrid process and remained above 99% efficiency up to 5 times. The ozone concentration residual the system was reported to be negligible (0.013 mg/min). The CO and CO2 emissions in the hybrid process was higher than other processes, which indicates better mineralization in the hybrid process. Formaldehyde, octane, noonan, phenol, decanoic acid were reported as the main by-products. The results indicated that UV/O3/H2O2/ nanocomposite hybrid process has fantastic efficiency in the degradation of benzene as one of the indicators of VOCs.

18.
Ecotoxicol Environ Saf ; 247: 114222, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323151

RESUMEN

Here, a combined pretreatment oxidation process (O3/H2O2) was investigated to enhance the biodegradability of raw landfill leachate (RLL) and biomethane potential (BMP) in anaerobic reactors. The central composite design (CCD) and response surface methodology (RSM) were employed to optimize the operational parameters influencing on RLL bioavailability in O3/H2O2 process: pH, Oxygen Flow rate, Reaction Time, and H2O2 concentration. The findings revealed that the O3/H2O2 increased biodegradability index (BOD5/COD) of RLL from 0.41 to 0.68 under optimized condition (pH=8, Oxygen flow= 0.25 L.min-1, Reaction Time= 25 min, H2O2 concentration= 2.5 g.L-1). Furthermore, the effects of O3/H2O2 process on BMP of RLL were surveyed under mesophilic anaerobic reactors (Temperature: 37 ± 1 °C) in viewpoints of operational performance and methane yield in a batch mode for incubation period of 24 days. The results showed that O3/H2O2 process simultaneously improve the BMP by 2.99 times higher in a shorter lag-phase period (5 days) compared with control. The pretreatment O3/H2O2 and mesophilic anaerobic digestion process revealed a feasible and efficient method for enhance BMP of RLL.


Asunto(s)
Biocombustibles , Contaminantes Químicos del Agua , Anaerobiosis , Peróxido de Hidrógeno , Oxígeno
19.
Environ Sci Pollut Res Int ; 29(37): 56403-56418, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35334054

RESUMEN

In this study photo-catalytic degradation of sulfamethoxazole (SMX) from aqueous solutions using carbon quantum dot (CQD)-decorated Cu-TiO2 was investigated. The as-prepared photo-catalyst samples were characterized by various FTIR, XRD, FE-SEM, TEM, EDX, BET, and DRS techniques. The investigation of effective photo-catalytic operational parameters confirmed that the complete removal of SMX (20 mg/L) can be accomplished at pH: 6.0 and light intensity: 75 mW/cm2 over a 30-min reaction time. DRS analysis demonstrated adding CQD to the Cu-TiO2 reduced its bandgap energy from 2.97 to 2.90 eV. The photo-catalytic degradation kinetics of SMX fit well with the pseudo-first-order model. The radical trapping experiment indicates that HO• and O2•- active species were more effective species for SMX degradation, and the higher inhibition effect on the SMX degradation efficiency was assigned to O2•- ions. The water matrix species-inhibited effect in SMX removal was as follows: SO42- > Cl- > NO3- > CO3- > no ions. The synthesized photo-catalyst could be recycled after six consecutive cycles of SMX degradation with an insignificant decrease in performance. The total organic carbon (TOC) analysis suggested the mineralization of SMZ by composite photo-catalysts. The minimum inhibitory concentration (MIC) for Escherichia coli remained at 12.5 mg L-1 SMX. A possible mechanism and pathway of SMX degradation in the photo-catalytic system was presented.


Asunto(s)
Sulfametoxazol/metabolismo , Titanio/química , Aguas Residuales/química , Contaminantes Químicos del Agua , Carbono , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Preparaciones Farmacéuticas
20.
Food Chem X ; 14: 100283, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35296041

RESUMEN

Considering the importance of onions consumption in the household diet, controlling of heavy elements' concentration in foodstuffs is important to ensure the safety of an individual's health. This study aimed to evaluate the risk of heavy metals through onion consumption on human health. In this cross-sectional experimental study, 22 onion samples with varieties red, yellow, and white in the two autumn and winter seasons in 2020 were randomly collected from the different provinces of Kurdistan, Hamedan, and Kermanshah. The concentrations of heavy metals were evaluated with an atomic absorption spectrometer. The risks of human health were evaluated by the hazard quotient (HQ) and the obtained results were analyzed with one-way ANOVA and one sample t-test. The obtained findings demonstrated that all collected samples contained heavy metals. For example, the cadmium (Cd) concentration in onion samples in the province of West Azerbaijan, Kurdistan, Hormozgan, Isfahan, and Zanjan was 526.49, 274.49, 69.77, 67.39, 65.69 µg kg-1, respectively. While the standard specified in Iran for the concentration of Cd in onions is 50 µg kg-1. However, the rate of lead (Pb) contamination in samples collected from Isfahan, Hormozgan, Zanjan Khuzestan, Tehran (Varamin) was 296.50, 266.71, 261.49, 215.64, 106.19 µg kg-1, respectively, which less than maximum allowable limit recommended by WHO-FAO (300 µg kg-1). The HQ for non-cancerous diseases for Cd and Pb were 8.6 × 10-2 and 1.6 × 10-1, respectively, and the probability of carcinogenic risk for Pb (8.1 × 10-4) was at the level of acceptable. There is no concern about the non-carcinogenic diseases and carcinogenic risk of consuming heavy metals in onion. Therefore, for optimal management and prevention of further pollution, it is recommended to study the origin and determine the amounts of heavy metals for their potential contamination of foodstuffs from the region's soil, water, and dust.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...