Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(11): 13072-13086, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33720681

RESUMEN

Synthesis of three-dimensional photocatalysts offers great potential for chemical conversion and hydrogen generation as appropriate solutions for environmental protection and energy shortage challenges. In this study, the magnetic WO3-x@mesoporous carbon (M-WO3-x@MC) was synthesized through the evaporation-induced self-assembly method applying diatom frustules as a natural template. Then, plasma modification was used to prepare the N-doped M-WO3-x@MC (NM-WO3-x@MC) with enhanced photocatalytic activity and durable performance. The WO3-x was embedded in the conductive MC, which was also partially reduced by the carbon precursor within the heat-treatment procedure. The obtained M-WO3-x@MC was treated by the plasma under an N2 atmosphere for the production of the final photocatalyst containing both the N-doped WO3-x and MC. As a result, the NM-WO3-x@MC had larger surface area (208.4 m2 g-1), narrower band gap (2.3 eV), more visible light harvesting, and confined electron-hole pairs recombination. The H2 generation rates of net WO3 nanorods and NM-WO3-x@MC nanocomposite were estimated as 532 and 2765 µmol g-1 h-1, respectively. Additionally, more than 90% of antibiotics (cephalexin, cefazolin and cephradine) degradation and 76% of total organic carbon elimination were obtained after 120 and 240 min of photocatalytic process under visible light irradiation. Eventually, more than eight intermediates were detected for each antibiotic degradation using the gas chromatography-mass spectrometer method, and based on the obtained results, the possible degradation pathways were suggested.

2.
J Environ Manage ; 267: 110629, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32349954

RESUMEN

The modified multifunctional electrodes for electro-Fenton (EF) process are suggested to be promising cathodes for in situ electro-generation and activation of H2O2 to produce hydroxyl radicals (•OH). However, heterogeneous EF process still faces the challenges of limited catalytic activity and releasing of massive amounts of transition metals to the solution after removal of organic pollutants. The main aim of the present investigation was to prepare a cathode containing carbon nanotubes (CNTs) and CuFe nano-layered double hydroxide (NLDH) for degradation and mineralization of cefazolin antibiotic through electro-Fenton process. Structural and electrochemical analyses demonstrated that CuFeNLDH-CNTs nanocomposite was successfully incorporated on the surface of graphite cathode. Due to the increased formation of •OH in the reactor, the incorporation of CNTs into NLDH matrix with a catalyst loading of 0.1 g substantially improved the degradation efficiency of cefazolin (89.9%) in comparison with CNTs-coated (28.7%) and bare graphite cathode (22.8%) within 100 min. In the presence of 15 mM of ethanol, the degradation efficiency of cefazolin was remarkably decreased to 43.7% by the process, indicating the major role of •OH in the destruction of target molecules. Acidic conditions favored the degradation efficiency of cefazolin by the modified EF process. Mineralization efficiency of the bio-refractory compound was obtained to be 70.1% in terms of chemical oxygen demand (COD) analysis after 300 min. The gas chromatography-mass spectroscopy (GC-MS) analysis was also implemented to identify the intermediate byproducts generated during the degradation of cefazolin in the CuFeNLDH-CNTs/EF reactor.


Asunto(s)
Grafito , Nanotubos de Carbono , Contaminantes Químicos del Agua , Cefazolina , Electrodos , Peróxido de Hidrógeno , Oxidación-Reducción
3.
Ultrason Sonochem ; 64: 105044, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32146334

RESUMEN

Existing techniques for the preparation of silica structures from diatom cells include cleaning of frustules through baking at high temperature and oxidant cleaning using concentrated sulfuric acid, hydrogen peroxide, nitric acid, or sodium dodecyl sulfate (SDS)/ethylenediaminetetraacetic acid (EDTA). In this study, sono-Fenton (SF) process was examined to prepare nanoporous silica through cleaning diatom frustules, while preserving their structural features. Single colonies of Cyclotella sp. were cultivated in batch mode f/2-enriched seawater. Combination of Fenton process with ultrasonication was found to be more efficient than the sum of individual processes in the removal of organic compounds from Cyclotella sp. structure. The optimized amounts of operational parameters were determined as suspension pH of 3, diatom cell density of 4.8 × 105 cell mL-1, H2O2 concentration of 60 mM, Fe2+ concentration of 15 mM, ultrasound irradiation power of 400 W and the temperature of 45 °C. The results of energy-dispersive X-ray spectroscopy (EDX) and thermal gravimetry (TG) analyses proved that organic materials covering the cell wall were significantly removed from the frustules through SF process. Scanning electron microscopy (SEM) images showed that after SF treatment, silica nanostructures were produced having uniform pores less than 15 nm in diameter. N2 adsorption-desorption isotherms demonstrated that almost non-porous structure of diatom frustules became mesoporous during removing the organic matrix. Lipids, amino acids, carbohydrates and organic acids or their oxidized products were identified using GC-MS analysis as the main organic compounds released from diatom cells to the solution after SF treatment. Treated frustules exhibited adsorption capability of 91.2 mg/g for Methylene Blue, which was almost 2.5 times higher than that of untreated frustules (34.8 mg/g).

4.
J Hazard Mater ; 381: 120742, 2020 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-31204019

RESUMEN

This study reports the successful synthesis of Fe-Cu layered double hydroxide (Fe-Cu-LDH) /biochar (BC) nanocomposite by a hydrothermal method. The sonocatalytic performance of Fe-Cu-LDH/BC nanocomposite was investigated for the degradation of cefazolin sodium (CFZ), as a model emerging contaminant, from the solution. The physico-chemical properties of the synthesized samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), and UV-Vis diffuse reflectance spectroscopy (DRS) analyses. The best sonocatalytic efficiency of 97.6% was achieved by using 1.0 g/L sonocatalyst, 0.1 mM CFZ, and an ultrasonic power of 300 W at pH = 6.5 (natural) within 80 min. Additionally, the effects of the addition of various oxidants, dissolved gases, and organic and inorganic scavengers on the degradation of CFZ were studied. Moreover, the possible sonocatalytic mechanism of the sonochemical degradation of CFZ in the presence of Fe-Cu-LDH/BC sonocatalyst was proposed based on the results of GC-MS analysis. The mineralization of CFZ solution was evaluated using COD and IC analyses. Finally, the reusability test of Fe-Cu-LDH/BC nanocomposite in the CFZ degradation revealed that almost 9% drop occurred after five successive cycles.


Asunto(s)
Antibacterianos/química , Cefazolina/química , Carbón Orgánico/química , Cobre/química , Hidróxidos/química , Hierro/química , Nanocompuestos/química , Contaminantes Químicos del Agua/química , Catálisis , Calor , Sonicación , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos
5.
J Hazard Mater ; 382: 121070, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31470301

RESUMEN

The aim of the present study was to investigate the photocatalytic performance of biochar (BC)-incorporated Zn-Co-layered double hydroxide (LDH) nanostructures in gemifloxacin (GMF) degradation as a model pharmaceutical pollutant. The as-prepared Zn-Co-LDH@BC showed high photocatalytic efficiency due to the enhanced separation of photo-generated charge carriers using cobalt hydroxide as well as inhibiting the agglomeration of LDH nanostructures by incorporation of BC. According to the results, 92.7% of GMF was degraded through photocatalysis in the presence of Zn-Co-LDH catalyst. The photocatalytic performance of BC-incorporated Zn-Co-LDH was highly dependent on the solute concentration and photocatalyst dosage. The addition of ethanol caused more inhibiting effect than that of benzoquinone (BQ), indicating the major role of •OH in decomposition of GMF compared to the negligible role of O2•-. A greater enhancement in the photocatalytic degradation of GMF was obtained when the photoreactor containing Zn-Co-LDH@BC nanostructures was oxygenated. Less than 10% drop in the removal efficiency of GMF was observed within five successive operational runs. The results of chemical oxygen demand (COD) analysis indicated the COD removal efficiency of about 80% within 200 min, indicating the acceptable mineralization of GMF. The reaction pathways were also proposed for the photocatalytic conversion of GMF under UV light irradiation.


Asunto(s)
Antibacterianos/química , Carbón Orgánico/química , Cobalto/química , Gemifloxacina/química , Hidróxidos/química , Nanocompuestos/química , Zinc/química , Catálisis , Carbón Orgánico/efectos de la radiación , Cobalto/efectos de la radiación , Hidróxidos/efectos de la radiación , Nanocompuestos/efectos de la radiación , Procesos Fotoquímicos , Rayos Ultravioleta , Zinc/efectos de la radiación
6.
Ultrason Sonochem ; 58: 104681, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31450341

RESUMEN

Contamination of water resources by refractory organic pollutants is of great environmental and health concern because these compounds are not degraded in the conventional wastewater treatment plants. In recent years, sonocatalytic treatment has been considered as a promising advanced oxidation technique for the acceptable degradation and mineralization of the recalcitrant organic compounds. For this purpose, various sonocatalysts have been utilized in order to accelerate the degradation process. The present review paper provides a summary of published studies on the sonocatalytic degradation of various organic pollutants based on the application of carbon-based catalysts, including carbon nanotubes (CNTs), graphene (GR), graphene oxide (GO), reduced graphene oxide (rGO), activated carbon (AC), biochar (BC), graphitic carbon nitride (g-C3N4), carbon doped materials, buckminsterfullerene (C60) and mesoporous carbon. The mechanism of sonocatalytic degradation of different organic compounds by the carbon-based sonocatalysts has been well assessed based on the literature. Moreover, the details of experimental conditions such as sonocatalyst dosage, solute concentration, ultrasound power, applied frequency, initial pH and reaction time related to each study have also been discussed in this review. Finally, concluding remarks as well as future challenges in this research field regarding new areas of study are also discussed and recommended.

7.
J Environ Manage ; 248: 109236, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31306926

RESUMEN

Nano-layered double hydroxide (NLDH) decorated with Fe and Cu was applied as a novel heterogeneous catalyst for catalytic degradation of gentamicin by the electro-Fenton (EF) process. The EF process was equipped with graphite plate under aeration to electrochemically generate hydrogen peroxide in the solution. The characterization analyses confirmed the suitable structure of as-synthesized Cu-Fe-NLDH to be acted as catalyst for treating the target pollutant. The comparative study showed the highest removal efficiency of 91.3% when the Cu-Fe-NLDH-equipped EF process was applied in comparison with the Fenton (50%) and the electro-oxidation alone (25.6%). The acidic pHs favored the degradation of gentamicin. Increasing the current resulted in the enhanced degradation of gentamicin, while the excessive electrolyte concentration (0.1 mol/L) and catalyst dosage (1.5 g/L) led to the tangible drop in the reactor performance. At a specified reaction time, the injection of O3 gas enhanced the efficiency of the Cu-Fe-NLDH-equipped EF process. The presence of ethanol led to more suppressing effect than benzoquinone, indicating the dominant role of OH radical in the degradation of gentamicin compared with other free radical species such as O2- radical. Only 10% drop in the degradation efficiency of gentamicin was observed within 10 operational runs. The mineralization efficiency of about 77% was achieved after 300 min in terms of chemical oxygen demand (COD) removal. The intermediate byproducts generated during the destructive removal of gentamicin were also identified.


Asunto(s)
Gentamicinas , Contaminantes Químicos del Agua , Peróxido de Hidrógeno , Hidróxidos , Hierro , Microesferas , Oxidación-Reducción
8.
Ultrason Sonochem ; 55: 44-56, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31084790

RESUMEN

This study focuses on the facile preparation of ZnO-biochar (ZnO-BC) nanocomposite prepared by the hydrothermal approach as an efficient sonocatalyst for degradation and mineralization of gemifloxacin (GMF). Morphological and textural characteristics of bare biochar (BC), ZnO nanorods (ZnO NRs) and ZnO-BC nanocomposite were investigated using TEM, SEM and BET analyses. Moreover, XRD, FTIR, EDX and UV-vis DRS analyses were performed to study the crystalline structure, functional groups, elemental composition and optical properties of the samples, respectively. ZnO-BC nanocomposite showed better sonocatalytic performance than BC and ZnO NRs owing to its huge surface area, narrow band gap and enhanced sonoluminescence phenomenon. These properties led to the synergetic ability of ultrasonic irradiation and catalytic activity of ZnO-BC to generate reactive species and subsequent radical reactions. In addition, the effect of the addition of various gases and scavengers on the removal of GMF was evaluated. The GC-MS analysis was used to verify the generation of some intermediates and a possible pathway was proposed accordingly. 83.7% COD removal efficiency was observed within 90 min treatment confirming efficient mineralization of GMF solution. The phytotoxicity test was carried out using Lemna minor and the results proved that after the treatment process, a considerable toxicity removal of the GMF solution had occured.


Asunto(s)
Araceae/efectos de los fármacos , Carbón Orgánico/química , Gemifloxacina/química , Nanotubos , Ondas Ultrasónicas , Óxido de Zinc/química , Óxido de Zinc/toxicidad , Catálisis , Concentración de Iones de Hidrógeno , Temperatura
9.
Ultrason Sonochem ; 48: 349-361, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30080560

RESUMEN

ZrO2-pumice and ZrO2-tuff nanocomposites were synthesized via a modified sol-gel method and used as efficient catalysts for sonocatalytic degradation of rifampin (RIF). The physico-chemical properties of the prepared catalysts were examined using XRF, SEM, EDX, FT-IR and BET analyses and compared to pure pumice and tuff samples. Subsequently, the efficacy of catalysts in degradation of RIF was assessed under various experimental conditions. Both ZrO2-pumice and ZrO2-tuff (1.5 g L-1) exhibited promising catalytic activity for sonocatalytic degradation of RIF at its initial concentration of 20 mg L-1, natural pH and under ultrasonic irradiation power of 300 W. In this condition, about 95% and 83% of RIF was removed through US/ZrO2-pumice and US/ZrO2-tuff processes, respectively. Furthermore, the influence of the addition of a number of scavengers, enhancers and gases on the degradation of RIF was studied. The pronounced degradation effectiveness of the catalysts under ultrasound irradiation could be assigned to their synergetic ability to produce reactive species and subsequent radical reactions. The intermediate products formed in the solution from degradation of RIF were also identified and a decomposition pathway was proposed using GC-MS, COD, TOC and IC analyses.

10.
IEEE J Biomed Health Inform ; 22(4): 1269-1277, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-28841560

RESUMEN

OBJECTIVE: to provide a proof-of-concept tool for segmenting chronic wounds and transmitting the results as instructions and coordinates to a bioprinter robot and thus facilitate the treatment of chronic wounds. METHODS: several segmentation methods used for measuring wound geometry, including edge-detection and morphological operations, region-growing, Livewire, active contours, and texture segmentation, were compared on 26 images from 15 subjects. Ground-truth wound delineations were generated by a dermatologist. The wound coordinates were converted into G-code understandable by the bioprinting robot. Due to its desirable properties, alginate hydrogel was synthesized by dissolving 16% (w/v) sodium-alginate and 4% (w/v) gelatin in deionized water and used for cell encapsulation. RESULTS: Livewire achieved the best performance, with minimal user interaction: 97.08%, 99.68% 96.67%, 96.22, 98.15, and 32.26, mean values, respectively, for accuracy, sensitivity, specificity, Jaccard index, Dice similarity coefficient, and Hausdorff distance. The bioprinter robot was able to print skin cells on the surface of skin with a 95.56% similarity between the bioprinted patch's dimensions and the desired wound geometry. CONCLUSION: we have designed a novel approach for the healing of chronic wounds, based on semiautomatic segmentation of wound images, improving clinicians' control of the bioprinting process through more accurate coordinates. SIGNIFICANCE: this study is the first to perform wound bioprinting based on image segmentation. It also compares several segmentation methods used for this purpose to determine the best.


Asunto(s)
Bioimpresión/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Ingeniería de Tejidos/métodos , Cicatrización de Heridas/fisiología , Heridas y Lesiones/diagnóstico por imagen , Algoritmos , Enfermedad Crónica , Humanos , Piel/diagnóstico por imagen , Piel/patología , Úlcera Cutánea/diagnóstico por imagen , Andamios del Tejido
11.
Ultrason Sonochem ; 41: 503-513, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29137781

RESUMEN

The sonocatalytic performance of CeO2 nanoparticles synthesized by a hydrothermal method (CeO2-H) and CeO2@biochar (CeO2-H@BC) nanocomposite, were evaluated for the degradation of Reactive Red 84 (RR84) under ultrasonic irradiation. For comparison purposes the corresponding performance of bare biochar (BC) and commercial CeO2 (CeO2-C) samples were also assessed. A complementary characterization study, involving scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), N2 adsorption at -196°C (Brunauer-Emmett-Teller (BET) method) and Fourier transform infrared spectroscopy (FT-IR) was undertaken to gain insight into the structure-performance relationships. The effect of various parameters such as initial RR84 concentration, solution pH, catalyst amount and ultrasonic power on the sonodegradation of RR84 was studied in detail. The results indicated that the CeO2-H@BC nanocomposite exhibited the best RR84 degradation efficiency, which is enhanced with the increase of CeO2-H@BC amount and ultrasonic power but diminished with the increment in RR84 concentration and pH value. A 98.5% degradation was obtained with a CeO2-H@BC amount of 1g/L, ultrasonic power of 450 W, pH of 6.5 and initial RR84 concentration of 10mg/L. The quenching effects of various scavengers proposed that OH radical plays the key role in the process. Analyses of intermediates by Gas chromatography-Mass spectroscopy (GC-MS) identified several by-products and accordingly the main pathway was proposed.

12.
Ultrason Sonochem ; 39: 120-128, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28732928

RESUMEN

TiO2-biochar (TiO2-BC) nanocomposite was synthesized by sol-gel method. The characteristics of the prepared nanocomposite were examined using X-ray fluorescence, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and N2 adsorption-desorption analysis. The performance of synthesized TiO2-BC nanocomposite as efficient sonocatalyst was studied for the degradation of Reactive Blue 69 (RB69). Sonocatalytic degradation of RB69 in the presence of TiO2-BC nanocomposite could be explained by the mechanisms of hot spots and sonoluminescence. The optimized values for main operational parameters were determined as pH of 7, TiO2-BC dosage of 1.5g/L, RB69 initial concentration of 20mg/L and ultrasonic power of 300W. Furthermore, the effect of OH, h+ and O2- scavengers on the RB69 degradation efficiency was studied. Gas chromatography-mass spectroscopy analysis was used to identify intermediate compounds formed during the RB69 degradation. The results of repeated applications of TiO2-BC in the sonocatalytic process verified its stability in long-term usage.

13.
Ultrason Sonochem ; 39: 540-549, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28732979

RESUMEN

ZrO2-biochar (ZrO2-BC) nanocomposite was prepared by a modified sonochemical/sol-gel method. The physicochemical properties of the prepared nanocomposite were evaluated using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray fluorescence, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller model. The sonocatalytic performance of ZrO2-BC was investigated in sonochemical degradation of Reactive Yellow 39 (RY39). The high observed sonocatalytic activity of the ZrO2-BC sample could be interpreted by the mechanisms of sonoluminescence and hot spots. Parameters including ZrO2-BC dosage, solution pH, initial RY39 concentration and ultrasonic power were selected as the main operational parameters and their influence on RY39 degradation efficiency was examined. A 96.8% degradation efficiency was achieved with a ZrO2-BC dosage of 1.5g/L, pH of 6, initial RY39 concentration of 20mg/L and ultrasonic power of 300W. In the presence of OH radical scavengers, RY39 degradation was significantly inhibited, providing evidence for the key role of hydroxyl radicals in the process. The sonodegradation intermediates were identified using gas chromatography-mass spectroscopy and the possible decomposition route was proposed.

14.
Ultrason Sonochem ; 35(Pt A): 251-262, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27720593

RESUMEN

TiO2/Montmorillonite (TiO2/MMT) nanocomposite as sonocatalyst was produced by immobilizing synthesized TiO2 on the surface of montmorillonite. The characteristics of produced nanocomposite were investigated using XRD, XRF, FTIR, TEM, SEM, EDX, UV-vis DRS and nitrogen adsorption-desorption analyses. The synthesized TiO2 and TiO2/MMT samples were applied as catalysts for sonocatalytic degradation of ciprofloxacin (CIP). The performance of the TiO2/MMT was greater than pure TiO2 sample in treatment of CIP solution. The degradation efficiency of the CIP by sonocatalytic process was affected by solution pH, catalyst dosage, initial CIP concentrations and ultrasonic power. Degradation efficiency of 65.01% was obtained at the pH of 6, catalyst dosage of 0.2gL-1, initial CIP concentration of 10mgL-1 and ultrasonic power of 650WL-1. It was observed that the presence of inorganic and organic scavengers suppressed the performance of sonocatalytic process. The stability of the nanocomposite was studied in several successive experiments, and the degradation efficiency declined only 61.48% after 4 repeated experiments. The main degradation by-products were recognized by GC-MS method to propose the possible sonocatalytic mechanism for the degradation of CIP.

15.
Ultrason Sonochem ; 32: 357-370, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27150782

RESUMEN

Natural pyrite (NP) was treated using oxygen and nitrogen non-thermal plasmas to form modified catalysts. Cleaning effect of the O2 plasma by chemical etching leads to removal of impurities from catalyst surface and sputtering effect of the N2 plasma results in formation of pyrite nanorods. The mentioned plasmas were applied separately or in the order of first O2 and then N2, respectively. The catalytic performance of the plasma-modified pyrites (PMPs) is better than the NP for treatment of Reactive Blue 69 (RB69) in heterogeneous sono-Fenton process (US/H2O2/PMP). The NP and the most effective modified pyrite (PMP4) samples were characterized by XRD, FT-IR, SEM, EDX, XPS and BET analyses. The desired amounts were chosen for operational parameters including initial pH (5), H2O2 concentration (1mM), PMP4 dosage (0.6g/L), dye concentration (20mg/L), and ultrasonic power (300W). Moreover, the effects of peroxydisulfate and inorganic salts on the degradation efficiency were investigated. Gas chromatography-mass spectrometry (GC-MS) method was applied to identify the generated intermediates and a plausible pathway was proposed for RB69 degradation. Environmentally-friendly modification of the NP, low amount of leached iron and repeated reusability at milder pH are the significant privileges of the PMP4. The phytotoxicity test using Spirodela polyrrhiza verified the remarkable toxicity removal of the RB69 solution after the treatment process.


Asunto(s)
Antraquinonas , Hierro , Nanotubos , Sulfuros , Peróxido de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier
16.
Ultrason Sonochem ; 29: 213-25, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26585001

RESUMEN

The plasma-treated pyrite (PTP) nanostructures were prepared from natural pyrite (NP) utilizing argon plasma due to its sputtering and cleaning effects resulting in more active surface area. The NP and PTP were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM) methods. The performance of the PTP was greater than NP for treatment of Reactive Red 84 (RR84) by the heterogeneous sono-Fenton process. The optimum amounts of main operational parameters were obtained as PTP of 4 g/L, initial dye concentration of 10 mg/L, pH of 5, and ultrasonic power of 300 W after 120 min of reaction time. Also, the effects of enhancers, and inorganic salts and t-butanol as hydroxyl radical scavengers on the degradation efficiency were investigated. Gas chromatography-mass spectroscopy analysis (GC-MS) was applied for detection of some degradation intermediates. Environmentally friendly plasma modification of the NP, in situ production of H2O2 and OH radicals, low leached iron concentration and repeated reusability at the milder pH are the significant benefits of the PTP utilization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...