Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 86, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429829

RESUMEN

The human monkeypox virus (Mpox) is classified as a member of the Poxviridae family and belongs to the Orthopoxvirus genus. Mpox possesses double-stranded DNA, and there are two known genetic clades: those originating in West Africa and the Congo Basin, commonly known as Central African clades. Mpox may be treated with either the vaccinia vaccination or the therapeutics. Modifying the smallpox vaccine for treating and preventing Mpox has shown to be beneficial because of the strong link between smallpox and Mpox viruses and their categorization in the same family. Cross-protection against Mpox is effective with two Food and Drug Administration (FDA)-approved smallpox vaccines (ACAM2000 and JYNNEOSTM). However, ACAM2000 has the potential for significant adverse effects, such as cardiac issues, whereas JYNNEOS has a lower risk profile. Moreover, Mpox has managed to resurface, although with modified characteristics, due to the discontinuation and cessation of the smallpox vaccine for 40 years. The safety and efficacy of the two leading mRNA vaccines against SARS-CoV-2 and its many variants have been shown in clinical trials and subsequent data analysis. This first mRNA treatment model involves injecting patients with messenger RNA to produce target proteins and elicit an immunological response. High potency, the possibility of safe administration, low-cost manufacture, and quick development is just a few of the benefits of RNA-based vaccines that pave the way for a viable alternative to conventional vaccines. When protecting against Mpox infection, mRNA vaccines are pretty efficient and may one day replace the present whole-virus vaccines. Therefore, the purpose of this article is to provide a synopsis of the ongoing research, development, and testing of an mRNA vaccine against Mpox.


Asunto(s)
Mpox , Vacuna contra Viruela , Viruela , Estados Unidos , Humanos , Vacunas de ARNm , Vacunas contra la COVID-19 , Mpox/prevención & control , Antígenos Virales
2.
Cell Commun Signal ; 21(1): 318, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946175

RESUMEN

According to a paper released and submitted to WHO by IARC scientists, there would be 905,700 new cases of liver cancer diagnosed globally in 2020, with 830,200 deaths expected as a direct result. Hepatitis B virus (HBV) hepatitis C virus (HCV), and hepatitis D virus (HDV) all play critical roles in the pathogenesis of hepatocellular carcinoma (HCC), despite the rising prevalence of HCC due to non-infectious causes. Liver cirrhosis and HCC are devastating consequences of HBV and HCV infections, which are widespread worldwide. Associated with a high mortality rate, these infections cause about 1.3 million deaths annually and are the primary cause of HCC globally. In addition to causing insertional mutations due to viral gene integration, epigenetic alterations and inducing chronic immunological dysfunction are all methods by which these viruses turn hepatocytes into cancerous ones. While expanding our knowledge of the illness, identifying these pathways also give possibilities for novel diagnostic and treatment methods. Nuclear factor erythroid 2-related factor 2 (NRF2) activation is gaining popularity as a treatment option for oxidative stress (OS), inflammation, and metabolic abnormalities. Numerous studies have shown that elevated Nrf2 expression is linked to HCC, providing more evidence that Nrf2 is a critical factor in HCC. This aberrant Nrf2 signaling drives cell proliferation, initiates angiogenesis and invasion, and imparts drug resistance. As a result, this master regulator may be a promising treatment target for HCC. In addition, the activation of Nrf2 is a common viral effect that contributes to the pathogenesis, development, and chronicity of virus infection. However, certain viruses suppress Nrf2 activity, which is helpful to the virus in maintaining cellular homeostasis. In this paper, we discussed the influence of Nrf2 deregulation on the viral life cycle and the pathogenesis associated with HBV and HCV. We summed up the mechanisms for the modulation of Nrf2 that are deregulated by these viruses. Moreover, we describe the molecular mechanism by which Nrf2 is modulated in liver cancer, liver cancer stem cells (LCSCs), and liver cancer caused by HBV and HCV. Video Abstract.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/patología , Factor 2 Relacionado con NF-E2 , Hepatitis C/complicaciones , Hepatitis C/patología , Virus de Hepatitis
3.
J Fluoresc ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37882934

RESUMEN

In the current study, the fluorescent Carbon quantum dots (CDs) were synthesized through one-step hydrothermal approach by orange juice without any additional agents. The as-prepared green-CDs (GCDs) were quasi-spherical shape ranged from 2 to 8 nm with an average diameter of 5 nm, and emitted bright blue fluorescent (FL) under ultraviolet light irradiation (Uv). Different detailed analyses proved that the as-prepared GCDs had good morphologies, various functional groups, high water solubility, great optical features, and excellent stability towards diverse environmental conditions. The results indicated that the as-prepared GCDs can detect different concentrations of dopamine from 1 to 100 µM based on the quenching of their native fluorescent. Furthermore, the good linear relationship was obtained for dopamine in the broad range of concentrations from 1 to 100 µM with the limit of detection (LOD) of 0.81 µM. In addition, the as-prepared GCDs can be applied as a fluorescent probe for detection of dopamine in the different real samples.

5.
World J Microbiol Biotechnol ; 39(7): 190, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37156882

RESUMEN

Bismuth (Bi) combinations have been utilized for the treatment of bacterial infections. In addition, these metal compounds are most frequently utilized for treating gastrointestinal diseases. Usually, Bi is found as bismuthinite (Bi sulfide), bismite (Bi oxide), and bismuthite (Bi carbonate). Newly, Bi nanoparticles (BiNP) were produced for CT imaging or photothermal treatment and nanocarriers for medicine transfer. Further benefits, such as increased biocompatibility and specific surface area, are also seen in regular-size BiNPs. Low toxicity and ecologically favorable attributes have generated interest in BiNPs for biomedical approaches. Moreover, BiNPs offer an option for treating multidrug-resistant (MDR) bacteria because they communicate directly with the bacterial cell wall, induce adaptive and inherent immune reactions, generate reactive oxygen compounds, limit biofilm production, and stimulate intracellular impacts. In addition, BiNPs in amalgamation with X-ray therapy as well as have the capability to treat MDR bacteria. BiNPs as photothermal agents can realize the actual antibacterial through continuous efforts of investigators in the near future. In this article, we summarized the properties of BiNPs, and different preparation methods, also reviewed the latest advances in the BiNPs' performance and their therapeutic effects on various bacterial infections, such as Helicobacter pylori, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Infecciones Estafilocócicas , Humanos , Bismuto/farmacología , Bacterias , Escherichia coli , Antibacterianos/farmacología , Nanopartículas del Metal/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...