Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088700

RESUMEN

Oncogenic FGFR4 signaling represents a potential therapeutic target in various cancer types, including triple negative breast cancer (TNBC) and hepatocellular carcinoma (HCC). However, resistance to FGFR4 single-agent therapy remains a major challenge, emphasizing the need for effective combinatorial treatments. Our study sought to develop a comprehensive computational model of FGFR4 signaling and provide network-level insights into resistance mechanisms driven by signaling dynamics. An integrated approach, combining computational network modeling with experimental validation, uncovered potent AKT reactivation following FGFR4 targeting in TNBC cells. Analyzing the effects of co-targeting specific network nodes by systematically simulating the model predicted synergy of co-targeting FGFR4 and AKT or specific ErbB kinases, which was subsequently confirmed through experimental validation; however, co-targeting FGFR4 and PI3K was not synergistic. Protein expression data from hundreds of cancer cell lines was incorporated to adapt the model to diverse cellular contexts. This revealed that while AKT rebound was common, it was not a general phenomenon. For example, ERK reactivation occurred in certain cell types, including an FGFR4-driven HCC cell line, where there is a synergistic effect of co-targeting FGFR4 and MEK but not AKT. In summary, this study offers key insights into drug-induced network remodeling and the role of protein expression heterogeneity in targeted therapy responses. These findings underscore the utility of computational network modeling for designing cell type-selective combination therapies and enhancing precision cancer treatment.

2.
Nat Commun ; 15(1): 6614, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103333

RESUMEN

Signal processing by intracellular kinases controls near all biological processes but how signal pathway functions evolve with changed cellular context is poorly understood. Functional specificity of c-Jun N-terminal Kinases (JNK) are partly encoded by signal strength. Here we reveal that intracellular pH (pHi) is a significant component of the JNK network and defines signal response to specific stimuli. We show pHi regulates JNK activity in response to cell stress, with the relationship between pHi and JNK activity dependent on specific stimuli and upstream kinases activated. Using the optogenetic clustering tag CRY2, we show that an increase in pHi promotes the light-induced phase transition of ASK1 to augment JNK activation. While increased pHi similarly promoted CRY2-tagged JNK2 to form light-induced condensates, this attenuated JNK activity. Mathematical modelling of feedback signalling incorporating pHi and differential contributions by ASK1 and JNK2 condensates was sufficient to delineate signal responses to specific stimuli. Taking pHi and ASK1/JNK2 signal contributions into consideration may delineate oncogenic versus tumour suppressive JNK functions and cancer cell drug responses.


Asunto(s)
MAP Quinasa Quinasa Quinasa 5 , Concentración de Iones de Hidrógeno , MAP Quinasa Quinasa Quinasa 5/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética , Humanos , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/genética , Estrés Fisiológico , Transducción de Señal , Animales , Optogenética , Sistema de Señalización de MAP Quinasas
3.
BMC Med Inform Decis Mak ; 24(1): 70, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468330

RESUMEN

BACKGROUND: Pre-operative risk assessment can help clinicians prepare patients for surgery, reducing the risk of perioperative complications, length of hospital stay, readmission and mortality. Further, it can facilitate collaborative decision-making and operational planning. OBJECTIVE: To develop effective pre-operative risk assessment algorithms (referred to as Patient Optimizer or POP) using Machine Learning (ML) that predict the development of post-operative complications and provide pilot data to inform the design of a larger prospective study. METHODS: After institutional ethics approval, we developed a base model that encapsulates the standard manual approach of combining patient-risk and procedure-risk. In an automated process, additional variables were included and tested with 10-fold cross-validation, and the best performing features were selected. The models were evaluated and confidence intervals calculated using bootstrapping. Clinical expertise was used to restrict the cardinality of categorical variables (e.g. pathology results) by including the most clinically relevant values. The models were created with logistic regression (LR) and extreme gradient-boosted trees using XGBoost (Chen and Guestrin, 2016). We evaluated performance using the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). Data was obtained from a metropolitan university teaching hospital from January 2015 to July 2020. Data collection was restricted to adult patients undergoing elective surgery. RESULTS: A total of 11,475 adult admissions were included. The performance of XGBoost and LR was very similar across endpoints and metrics. For predicting the risk of any post-operative complication, kidney failure and length-of-stay (LOS), POP with XGBoost achieved an AUROC (95%CI) of 0.755 (0.744, 0.767), 0.869 (0.846, 0.891) and 0.841 (0.833, 0.847) respectively and AUPRC of 0.651 (0.632, 0.669), 0.336 (0.282, 0.390) and 0.741 (0.729, 0.753) respectively. For 30-day readmission and in-patient mortality, POP with XGBoost achieved an AUROC (95%CI) of 0.610 (0.587, 0.635) and 0.866 (0.777, 0.943) respectively and AUPRC of 0.116 (0.104, 0.132) and 0.031 (0.015, 0.072) respectively. CONCLUSION: The POP algorithms effectively predicted any post-operative complication, kidney failure and LOS in the sample population. A larger study is justified to improve the algorithm to better predict complications and length of hospital stay. A larger dataset may also improve the prediction of additional specific complications, readmission and mortality.


Asunto(s)
Aprendizaje Automático , Insuficiencia Renal , Adulto , Humanos , Estudios Prospectivos , Algoritmos , Hospitales de Enseñanza , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/prevención & control , Estudios Retrospectivos
4.
iScience ; 27(3): 109031, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38380257

RESUMEN

The transcriptional co-activator YAP forms complexes with distinct transcription factors, controlling cell fate decisions, such as proliferation and apoptosis. However, the mechanisms underlying its context-dependent function are poorly defined. This study explores the interplay between the TGF-ß and Hippo pathways and their influence on YAP's association with specific transcription factors. By integrating iterative mathematical modeling with experimental validation, we uncover molecular switches, predominantly controlled by RASSF1A and ITCH, which dictate the formation of YAP-SMAD (proliferative) and YAP-p73 (apoptotic) complexes. Our results show that RASSF1A enhances the formation of apoptotic complexes, whereas ITCH promotes the formation of proliferative complexes. Notably, higher levels of ITCH transform YAP-SMAD activity from a transient to a sustained state, impacting cellular behaviors. Extending these findings to various breast cancer cell lines highlights the role of cellular context in YAP regulation. Our study provides new insights into the mechanisms of YAP transcriptional activities and their therapeutic implications.

5.
PLoS Comput Biol ; 17(9): e1008513, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34529665

RESUMEN

The PI3K/MTOR signalling network regulates a broad array of critical cellular processes, including cell growth, metabolism and autophagy. The mechanistic target of rapamycin (MTOR) kinase functions as a core catalytic subunit in two physically and functionally distinct complexes mTORC1 and mTORC2, which also share other common components including MLST8 (also known as GßL) and DEPTOR. Despite intensive research, how mTORC1 and 2 assembly and activity are coordinated, and how they are functionally linked remain to be fully characterized. This is due in part to the complex network wiring, featuring multiple feedback loops and intricate post-translational modifications. Here, we integrate predictive network modelling, in vitro experiments and -omics data analysis to elucidate the emergent dynamic behaviour of the PI3K/MTOR network. We construct new mechanistic models that encapsulate critical mechanistic details, including mTORC1/2 coordination by MLST8 (de)ubiquitination and the Akt-to-mTORC2 positive feedback loop. Model simulations validated by experimental studies revealed a previously unknown biphasic, threshold-gated dependence of mTORC1 activity on the key mTORC2 subunit SIN1, which is robust against cell-to-cell variation in protein expression. In addition, our integrative analysis demonstrates that ubiquitination of MLST8, which is reversed by OTUD7B, is regulated by IRS1/2. Our results further support the essential role of MLST8 in enabling both mTORC1 and 2's activity and suggest MLST8 as a viable therapeutic target in breast cancer. Overall, our study reports a new mechanistic model of PI3K/MTOR signalling incorporating MLST8-mediated mTORC1/2 formation and unveils a novel regulatory linkage between mTORC1 and mTORC2.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular , Péptidos y Proteínas de Señalización Intracelular , Diana Mecanicista del Complejo 2 de la Rapamicina/química , Reproducibilidad de los Resultados , Transducción de Señal , Homóloga LST8 de la Proteína Asociada al mTOR/metabolismo
6.
Elife ; 102021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34253290

RESUMEN

The phosphoinositide 3-kinase (PI3K)-Akt network is tightly controlled by feedback mechanisms that regulate signal flow and ensure signal fidelity. A rapid overshoot in insulin-stimulated recruitment of Akt to the plasma membrane has previously been reported, which is indicative of negative feedback operating on acute timescales. Here, we show that Akt itself engages this negative feedback by phosphorylating insulin receptor substrate (IRS) 1 and 2 on a number of residues. Phosphorylation results in the depletion of plasma membrane-localised IRS1/2, reducing the pool available for interaction with the insulin receptor. Together these events limit plasma membrane-associated PI3K and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) synthesis. We identified two Akt-dependent phosphorylation sites in IRS2 at S306 (S303 in mouse) and S577 (S573 in mouse) that are key drivers of this negative feedback. These findings establish a novel mechanism by which the kinase Akt acutely controls PIP3 abundance, through post-translational modification of the IRS scaffold.


For the body to work properly, cells must constantly 'talk' to each other using signalling molecules. Receiving a chemical signal triggers a series of molecular events in a cell, a so-called 'signal transduction pathway' that connects a signal with a precise outcome. Disturbing cell signalling can trigger disease, and strict control mechanisms are therefore in place to ensure that communication does not break down or become erratic. For instance, just as a thermostat turns off the heater once the right temperature is reached, negative feedback mechanisms in cells switch off signal transduction pathways when the desired outcome has been achieved. The hormone insulin is a signal for growth that increases in the body following a meal to promote the storage of excess blood glucose (sugar) in muscle and fat cells. The hormone binds to insulin receptors at the cell surface and switches on a signal transduction pathway that makes the cell take up glucose from the bloodstream. If the signal is not engaged diseases such as diabetes develop. Conversely, if the signal cannot be adequately switched of cancer can develop. Determining exactly how insulin works would help to understand these diseases better and to develop new treatments. Kearney et al. therefore set out to examine the biochemical 'fail-safes' that control insulin signalling. Experiments using computer simulations of the insulin signalling pathway revealed a potential new mechanism for negative feedback, which centred on a molecule known as Akt. The models predicted that if the negative feedback were removed, then Akt would become hyperactive and accumulate at the cell's surface after stimulation with insulin. Further manipulation of the 'virtual' insulin signalling pathway and studies of live cells in culture confirmed that this was indeed the case. The cell biology experiments also showed how Akt, once at the cell surface, was able to engage the negative feedback and shut down further insulin signalling. Akt did this by inactivating a protein required to pass the signal from the insulin receptor to the rest of the cell. Overall, this work helps to understand cell communication by revealing a previously unknown, and critical component of the insulin signalling pathway.


Asunto(s)
Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Animales , Antígenos CD , Membrana Celular/metabolismo , Biología Computacional , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Fosforilación , Transducción de Señal/fisiología
7.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203293

RESUMEN

The PI3K/mTOR signalling pathway plays a central role in the governing of cell growth, survival and metabolism. As such, it must integrate and decode information from both external and internal sources to guide efficient decision-making by the cell. To facilitate this, the pathway has evolved an intricate web of complex regulatory mechanisms and elaborate crosstalk with neighbouring signalling pathways, making it a highly non-linear system. Here, we describe the mechanistic biological details that underpin these regulatory mechanisms, covering a multitude of negative and positive feedback loops, feed-forward loops, competing protein interactions, and crosstalk with major signalling pathways. Further, we highlight the non-linear and dynamic network behaviours that arise from these regulations, uncovered through computational and experimental studies. Given the pivotal role of the PI3K/mTOR network in cellular homeostasis and its frequent dysregulation in pathologies including cancer and diabetes, a coherent and systems-level understanding of the complex regulation and consequential dynamic signalling behaviours within this network is imperative for advancing biology and development of new therapeutic approaches.


Asunto(s)
Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Homeostasis , Humanos , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA