Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38642788

RESUMEN

In this study, we developed polydopamine (PDA)-functionalized alginate dialdehyde-gelatine (ADA-GEL) scaffolds for subchondral bone regeneration. These polymeric scaffolds were then coated with ß-Lactoglobulin (ß-LG) at concentrations of 1 mg/ml and 2 mg/ml. Morphological analysis indicated a homogeneous coating of the ß-LG layer on the surface of network-like scaffolds. The ß-LG-coated scaffolds exhibited improved swelling capacity as a function of the ß-LG concentration. Compared to ADA-GEL/PDA scaffolds, the ß-LG-coated scaffolds demonstrated delayed degradation and enhanced biomineralization. Here, a lower concentration of ß-LG showed long-lasting stability and superior biomimetic hydroxyapatite mineralization. According to the theoretical findings, the single-state, representing the low concentration of ß-LG, exhibited a homogeneous distribution on the surface of the PDA, while the dimer-state (high concentration) displayed a high likelihood of uncontrolled interactions. ß-LG-coated ADA-GEL/PDA scaffolds with a lower concentration of ß-LG provided a biocompatible substrate that supported adhesion, proliferation, and alkaline phosphatase (ALP) secretion of sheep bone marrow mesenchymal stem cells, as well as increased expression of osteopontin (SPP1) and collagen type 1 (COL1A1) in human osteoblasts. These findings indicate the potential of protein-coated scaffolds for subchondral bone tissue regeneration. STATEMENT OF SIGNIFICANCE: This study addresses a crucial aspect of osteochondral defect repair, emphasizing the pivotal role of subchondral bone regeneration. The development of polydopamine-functionalized alginate dialdehyde-gelatine (ADA-GEL) scaffolds, coated with ß-Lactoglobulin (ß-LG), represents a novel approach to potentially enhance subchondral bone repair. ß-LG, a milk protein rich in essential amino acids and bioactive peptides, is investigated for its potential to promote subchondral bone regeneration. This research explores computationally and experimentally the influence of protein concentration on the ordered or irregular deposition, unravelling the interplay between coating structure, scaffold properties, and in-vitro performance. This work contributes to advancing ordered protein coating strategies for subchondral bone regeneration, providing a biocompatible solution with potential implications for supporting subsequent cartilage repair.

2.
Int J Biol Macromol ; 264(Pt 2): 130666, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453119

RESUMEN

Three-dimensional (3D) printing allows precise manufacturing of bone scaffolds for patient-specific applications and is one of the most recently developed and implemented technologies. In this study, bilayer and multimaterial alginate dialdehyde-gelatin (ADA-GEL) scaffolds incorporating polydopamine (PDA)/SiO2-CaO nanoparticle complexes were 3D printed using a pneumatic extrusion-based 3D printing technology and further modified on the surface with bovine serum albumin (BSA) for application in bone regeneration. The morphology, chemistry, and in vitro bioactivity of PDA/SiO2-CaO nanoparticle complexes were characterized (n = 3) and compared with those of mesoporous SiO2-CaO nanoparticles. Successful deposition of the PDA layer on the surface of the SiO2-CaO nanoparticles allowed better dispersion in a liquid medium and showed enhanced bioactivity. Rheological studies (n = 3) of ADA-GEL inks consisting of PDA/SiO2-CaO nanoparticle complexes showed results that may indicate better injectability and printability behavior compared to ADA-GEL inks incorporating unmodified nanoparticles. Microscopic observations of 3D printed scaffolds revealed that PDA/SiO2-CaO nanoparticle complexes introduced additional topography onto the surface of 3D printed scaffolds. Additionally, the modified scaffolds were mechanically stable and elastic, closely mimicking the properties of natural bone. Furthermore, protein-coated bilayer scaffolds displayed controllable absorption and biodegradation, enhanced bioactivity, MC3T3-E1 cell adhesion, proliferation, and higher alkaline phosphatase (ALP) activity (n = 3) compared to unmodified scaffolds. Consequently, the present results confirm that ADA-GEL scaffolds incorporating PDA/SiO2-CaO nanoparticle complexes modified with BSA offer a promising approach for bone regeneration applications.


Asunto(s)
Indoles , Nanopartículas , Polímeros , Andamios del Tejido , Humanos , Andamios del Tejido/química , Alginatos/química , Gelatina/química , Albúmina Sérica Bovina , Dióxido de Silicio , Regeneración Ósea , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Osteogénesis
3.
ACS Appl Bio Mater ; 6(10): 4290-4303, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37721636

RESUMEN

Multifunctional biohybrid nanofibers (NFs) that can simultaneously drive various cellular activities and confer antibacterial properties are considered desirable in producing advanced wound healing materials. In this study, a bionanohybrid formulation was processed as a NF wound dressing to stimulate the adhesion and proliferation of fibroblast and endothelial cells that play a major role in wound healing. Polyacrylonitrile (PAN) electrospun NFs were hydrolyzed using NaOH and biofunctionalized with l-carnosine (CAR), a dipeptide which could later biosynthesize zinc oxide (ZnO) nanoparticles (NPs) on the NFs surface. The morphological study verified that ZnO NPs are uniformly distributed on the surface of CAR/PAN NFs. Through EDX and XRD analysis, it was validated that the NPs are composed of ZnO and/or ZnO/Zn(OH)2. The presence of CAR and ZnO NPs brought about a superhydrophilicity effect and notably raised the elastic modulus and tensile strength of Zn-CAR/PAN NFs. While CAR ligands were shown to improve the viability of fibroblast (L929) and endothelial (HUVEC) cells, ZnO NPs lowered the positive impact of CAR, most likely due to their repulsive negative surface charge. A scratch assay verified that CAR/PAN NFs and Zn-CAR/PAN NFs aided HUVEC migration more than PAN NFs. Also, an antibacterial assay implied that CAR/PAN NFs and Zn-CAR/PAN NFs are significantly more effective in inhibiting Staphylococcus aureus (S. aureus) than neat PAN NFs are (1000 and 500%, respectively). Taken together, compared to the neat PAN NFs, CAR/PAN NFs with and without the biosynthesized ZnO NPs can support the cellular activities of relevance for wound healing and inactivate bacteria.


Asunto(s)
Carnosina , Nanofibras , Nanopartículas , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Carnosina/farmacología , Nanofibras/química , Staphylococcus aureus , Biomimética , Células Endoteliales , Cicatrización de Heridas , Nanopartículas/química , Antibacterianos/química
4.
RSC Adv ; 13(23): 15960-15974, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37250225

RESUMEN

This study seeks to simulate both the chemistry and piezoelectricity of bone by synthesizing electroconductive silane-modified gelatin-poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) scaffolds using the freeze drying technique. In order to enhance hydrophilicity, cell interaction, and biomineralization, the scaffolds were functionalized with polydopamine (PDA) inspired by mussels. Physicochemical, electrical, and mechanical analyses were conducted on the scaffolds, as well as in vitro evaluations using the osteosarcoma cell line MG-63. It was found that scaffolds had interconnected porous structures, so the PDA layer formation reduced the size of pores while maintaining scaffold uniformity. PDA functionalization reduced the electrical resistance of the constructs while improving their hydrophilicity, compressive strength, and modulus. As a result of the PDA functionalization and the use of silane coupling agents, higher stability and durability were achieved as well as an improvement in biomineralization capability after being soaked in SBF solution for a month. Additionally, the PDA coating enabled the constructs to enhance viability, adhesion, and proliferation of MG-63 cells, as well as to express alkaline phosphatase and deposit HA, indicating that scaffolds can be used for bone regeneration. Therefore, the PDA-coated scaffolds developed in this study and the non-toxic performance of PEDOT:PSS present a promising approach for further in vitro and in vivo studies.

5.
Clin Case Rep ; 11(4): e7230, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37113643

RESUMEN

Regenerative endodontics holds promising potential for the regeneration of living tissues in teeth with necrotic pulp and periapical lesion. Platelet-rich plasma can be easily prepared and used as an ideal scaffold for pulp regeneration.

6.
Polymers (Basel) ; 15(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36904309

RESUMEN

The development of peptide-based materials has emerged as one of the most challenging aspects of biomaterials in recent years. It has been widely acknowledged that peptide-based materials can be used in a broad range of biomedical applications, particularly in tissue engineering. Among them, hydrogels have been attracting considerable interest in tissue engineering because they mimic tissue formation conditions by providing a three-dimensional environment and a high water content. It has been found that peptide-based hydrogels have received more attention due to mimicking proteins, particularly extracellular matrix proteins, as well as the wide variety of applications they are capable of serving. It is without a doubt that peptide-based hydrogels have become the leading biomaterials of today owing to their tunable mechanical stability, high water content, and high biocompatibility. Here, we discuss in detail various types of peptide-based materials, emphasizing peptide-based hydrogels, and then we examine in detail how hydrogels are formed, paying particular attention to the peptide structures that are incorporated into the final structure. Following that, we discuss the self-assembly and formation of hydrogels under various conditions, as well as the parameters to be considered as critical factors, which include pH, amino acid composi- tion within the sequence, and cross-linking techniques. Further, recent studies on the development of peptide-based hydrogels and their applications in tissue engineering are reviewed.

8.
Adv Mater ; 35(26): e2208852, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36633376

RESUMEN

Cartilage degeneration is among the fundamental reasons behind disability and pain across the globe. Numerous approaches have been employed to treat cartilage diseases. Nevertheless, none have shown acceptable outcomes in the long run. In this regard, the convergence of tissue engineering and microfabrication principles can allow developing more advanced microfluidic technologies, thus offering attractive alternatives to current treatments and traditional constructs used in tissue engineering applications. Herein, the current developments involving microfluidic hydrogel-based scaffolds, promising structures for cartilage regeneration, ranging from hydrogels with microfluidic channels to hydrogels prepared by the microfluidic devices, that enable therapeutic delivery of cells, drugs, and growth factors, as well as cartilage-related organ-on-chips are reviewed. Thereafter, cartilage anatomy and types of damages, and present treatment options are briefly overviewed. Various hydrogels are introduced, and the advantages of microfluidic hydrogel-based scaffolds over traditional hydrogels are thoroughly discussed. Furthermore, available technologies for fabricating microfluidic hydrogel-based scaffolds and microfluidic chips are presented. The preclinical and clinical applications of microfluidic hydrogel-based scaffolds in cartilage regeneration and the development of cartilage-related microfluidic chips over time are further explained. The current developments, recent key challenges, and attractive prospects that should be considered so as to develop microfluidic systems in cartilage repair are highlighted.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Hidrogeles/química , Microfluídica , Cartílago , Microtecnología , Andamios del Tejido/química
9.
Front Bioeng Biotechnol ; 10: 1008360, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466324

RESUMEN

Increasing concern about age-related diseases, particularly musculoskeletal injuries and orthopedic conditions, highlights the need for strategies such as tissue engineering to address them. Surface modification has been developed to create pro-healing interfaces, personalize scaffolds and provide novel medicines. Polydopamine, a mussel-inspired adhesive polymer with highly reactive functional groups that adhere to nearly all substrates, has gained attention in surface modification strategies for biomaterials. Polydopamine was primarily developed to modify surfaces, but its effectiveness has opened up promising approaches for further applications in bioengineering as carriers and nanoparticles. This review focuses on the recent discoveries of the role of polydopamine as a surface coating material, with focus on the properties that make it suitable for tackling musculoskeletal disorders. We report the evolution of using it in research, and discuss papers involving the progress of this field. The current research on the role of polydopamine in bone, cartilage, muscle, nerve, and tendon regeneration is discussed, thus giving comprehensive overview about the function of polydopamine both in-vitro and in-vivo. Finally, the report concludes presenting the critical challenges that must be addressed for the clinical translation of this biomaterial while exploring future perspectives and research opportunities in this area.

10.
Mol Biol Rep ; 49(12): 12063-12075, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36315326

RESUMEN

BACKGROUND: Recently biomaterials utilized for designing scaffolds in tissue engineering are not cost-effective and eco-friendly. As a result, we design and develop biocompatible and bioactive hydrogels for osteo-tissue regeneration based on the natural polysaccharide chitosan. Three distinct hydrogel components were used for this. METHODS: Hydrogels networks were created using chitosan 2% (CTS 2%), carboxymethyl chitosan 2% (CMC 2%), and 50:50 mixtures of CTS and CMC (CTS/CMC 50:50). Furthermore, scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), degradation, and swelling behavior of design hydrogels were studied. Also, the cytocompatibility and osteo-differentiation potency were examined by encapsulating mesenchymal stem cells derived from adipose tissue (AMSCs) on the designed hydrogels. RESULTS: According to the findings, our results showed an acceptable pore structure, functional groups, and degradation rate of the designed hydrogels for in vitro evaluation. In addition, employing CMC instead of CTS or adding 50% CMC to the hydrogel component could improve the hydrogel's osteo-bioactivity without the use of external osteogenic differentiation agents. CONCLUSION: The CMC-containing hydrogel not only caused early osteogenesis but also accelerated differentiation to the maturity phase of osteoblasts.


Asunto(s)
Quitosano , Células Madre Mesenquimatosas , Hidrogeles/farmacología , Hidrogeles/química , Quitosano/farmacología , Osteogénesis , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular , Ingeniería de Tejidos/métodos , Andamios del Tejido
11.
Biomater Transl ; 3(2): 105-115, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105562

RESUMEN

Cartilage injuries are common problems that increase with the population aging. Cartilage is an avascular tissue with a relatively low level of cellular mitotic activity, which makes it impossible to heal spontaneously. To compensate for this problem, three-dimensional bio-printing has attracted a great deal of attention in cartilage tissue engineering. This emerging technology aims to create three-dimensional functional scaffolds by accurately depositing layer-by-layer bio-inks composed of biomaterial and cells. As a novel bio-ink, a decellularized extracellular matrix can serve as an appropriate substrate that contains all the necessary biological cues for cellular interactions. Here, this review is intended to provide an overview of decellularized extracellular matrix-based bio-inks and their properties, sources, and preparation process. Following this, decellularized extracellular matrix-based bio-inks for cartilage tissue engineering are discussed, emphasizing cell behavior and in-vivo applications. Afterward, the current challenges and future outlook will be discussed to determine the conclusing remarks.

12.
Front Bioeng Biotechnol ; 10: 940070, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003531

RESUMEN

This study utilized extrusion-based 3D printing technology to fabricate calcium-cross-linked alginate dialdehyde-gelatin scaffolds for bone regeneration. The surface of polymeric constructs was modified with mussel-derived polydopamine (PDA) in order to induce biomineralization, increase hydrophilicity, and enhance cell interactions. Microscopic observations revealed that the PDA layer homogeneously coated the surface and did not appear to induce any distinct change in the microstructure of the scaffolds. The PDA-functionalized scaffolds were more mechanically stable (compression strength of 0.69 ± 0.02 MPa) and hydrophilic (contact angle of 26) than non-modified scaffolds. PDA-decorated ADA-GEL scaffolds demonstrated greater durability. As result of the 18-days immersion in simulated body fluid solution, the PDA-coated scaffolds showed satisfactory biomineralization. Based on theoretical energy analysis, it was shown that the scaffolds coated with PDA interact spontaneously with osteocalcin and osteomodulin (binding energy values of -35.95 kJ mol-1 and -46.39 kJ mol-1, respectively), resulting in the formation of a protein layer on the surface, suggesting applications in bone repair. PDA-coated ADA-GEL scaffolds are capable of supporting osteosarcoma MG-63 cell adhesion, viability (140.18% after 7 days), and proliferation. In addition to increased alkaline phosphatase secretion, osteoimage intensity also increased, indicating that the scaffolds could potentially induce bone regeneration. As a consequence, the present results confirm that 3D printed PDA-coated scaffolds constitute an intriguing novel approach for bone tissue engineering.

13.
Front Bioeng Biotechnol ; 10: 967438, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003535

RESUMEN

This study aimed to develop injectable light-assisted thermo-responsive methylcellulose hydrogels filled with sodium humate, which were proposed for photothermal ablation and localized cisplatin delivery. Sodium humate converts light energy from laser beams into thermal energy, which causes methylcellulose to gel, thereby controlling the release of chemotherapy agents. Meanwhile, light emission causes to the photothermal ablation of tumor cells. For determining the optimal production conditions, different concentrations of sodium humate and light emission times were investigated. Results show that hydrogel uniformity is highly dependent on variables. An increase in sodium humate concentration and emission time resulted in a slight reduction in swelling ratio and an increase in durability. According to the simulation conditions, the cisplatin release profile was consistent with a non-Fickian mechanism with a predominant erosion contribution. In conjugation with increasing light emission time and sodium humate content, the storage modulus and viscosity increased, demonstrating hydrogel's sol-gel transition and long-lasting durability. The intrinsic fluorescence spectroscopy study revealed that the hydrogel-model protein complex empowered hydrogel bio-performance. Laser emission and cisplatin release synergistically reduced the number of viable osteosarcoma cell lines, suggesting the possibility of tumor ablation. This study describes the potential of simultaneous photothermal therapy and chemotherapy in osteosarcoma treatment, laying the groundwork for future preclinical and clinical trials.

14.
Front Endocrinol (Lausanne) ; 13: 885507, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663327

RESUMEN

Postmenopausal osteoporosis (PMOP) is a kind of primary osteoporosis that is characterized by decreased bone density and strength. Berbamine is a nonbasic quaternary benzylisoquinoline plant alkaloid that has been widely used in the clinic to treat leukopenia in China. We found that berbamine inhibited RANKL-induced osteoclastogenesis of bone marrow-derived macrophages (BMMs) in vitro, which mainly occurred in the middle phase and late phase. The gene and protein expression levels of osteoclast-related molecules, including CTSK, MMP-9, NFATc1, CD44 and DC-STAMP, were also downregulated by berbamine. In vivo, we treated PMOP mice with berbamine for 8 weeks and found that the extent of osteoporosis was alleviated significantly according to micro-CT scanning, hematoxylin-eosin staining, DC-STAMP immunohistochemical staining and TRAP immunohistochemical staining in the distal femurs of the mice. Our findings demonstrate that berbamine has an inhibitory effect on the osteoclastogenesis of BMMs and can prevent bone loss after ovariectomy in vivo. This study provides evidence that berbamine is a potential drug for the prevention and treatment of PMOP.


Asunto(s)
Alcaloides , Bencilisoquinolinas , Resorción Ósea , Osteoporosis Posmenopáusica , Osteoporosis , Alcaloides/farmacología , Alcaloides/uso terapéutico , Animales , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Femenino , Humanos , Ratones , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Osteoporosis Posmenopáusica/tratamiento farmacológico , Transducción de Señal
16.
Polymers (Basel) ; 14(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35267809

RESUMEN

The successful design of a hydrogel for tissue engineering requires a profound understanding of its constituents' structural and molecular properties, as well as the proper selection of components. If the engineered processes are in line with the procedures that natural materials undergo to achieve the best network structure necessary for the formation of the hydrogel with desired properties, the failure rate of tissue engineering projects will be significantly reduced. In this review, we examine the behavior of proteins as an essential and effective component of hydrogels, and describe the factors that can enhance the protein-based hydrogels' structure. Furthermore, we outline the fabrication route of protein-based hydrogels from protein microstructure and the selection of appropriate materials according to recent research to growth factors, crucial members of the protein family, and their delivery approaches. Finally, the unmet needs and current challenges in developing the ideal biomaterials for protein-based hydrogels are discussed, and emerging strategies in this area are highlighted.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 269: 120736, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34923375

RESUMEN

Photothermal therapy is one of the promising approaches toward cancer treatment. To date, several compounds have been developed for this application, among which nanoparticles are attracting ever-increasing attention. One of the obstacles in developing efficient photothermal nanoparticle agents is their off-target effect which is mainly mediated via non-specific interactions with proteins. Such interaction not only reduces the bioavailability of the agent but also will cause protein aggregation that can be lethal. So, gaining knowledge on the mechanisms mediating such interactions will facilitate development of more effective agents. Our last studies showed the mechanism of action of two modified gold nanoparticles, folic acid functionalized gold nanoparticles (FA-AuNPs) and gold shelled Fe3O4 nanoparticles (AuFeNPs), as photothermal agents. In the current work, we focus on the interaction of these two NPs with human serum albumin (HSA) and human hemoglobin (Hb) as model proteins. The complex formation between NPs and proteins was investigated by fluorescence spectroscopy, dynamic light scattering and circular dichroism. Our data distinguishes the very distinct mode of interaction of charged and neutral NPs with proteins. While the interaction of neutral AuFeNP to proteins is protein dependent, charged nanoparticles FA-AuNP interact indistinguishably with all proteins via electrostatic interactions. Moreover, complexes obtained from FA-AuNPs with proteins are more stable than that of AuFeNP. However, the secondary structure content of proteins in the presence of NPs indicates the insignificant effect of NPs on the secondary structure of these proteins. Our data propose that the charge functionalization of the NPs is an effective way for modulating the interaction of nanoparticles with proteins.


Asunto(s)
Oro , Nanopartículas del Metal , Dicroismo Circular , Humanos , Estructura Secundaria de Proteína , Electricidad Estática
18.
Gels ; 7(4)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34940334

RESUMEN

Nowadays, a prevalent joint disease affecting both cartilage and subchondral bone is osteoarthritis. Osteochondral tissue, a complex tissue unit, exhibited limited self-renewal potential. Furthermore, its gradient properties, including mechanical property, bio-compositions, and cellular behaviors, present a challenge in repairing and regenerating damaged osteochondral tissues. Here, tissue engineering and translational medicine development using bioprinting technology provided a promising strategy for osteochondral tissue repair. In this regard, personalized stratified scaffolds, which play an influential role in osteochondral regeneration, can provide potential treatment options in early-stage osteoarthritis to delay or avoid the use of joint replacements. Accordingly, bioactive scaffolds with possible integration with surrounding tissue and controlling inflammatory responses have promising future tissue engineering perspectives. This minireview focuses on introducing biologically active inks for bioprinting the hierarchical scaffolds, containing growth factors and bioactive materials for 3D printing of regenerative osteochondral substitutes.

19.
Nanoscale ; 13(47): 20098-20110, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34846416

RESUMEN

Protein coating is a strategy for modifying and improving the surface functional properties of nanomaterials. However, the underlying mechanism behind protein coating formation, which is essential for its practical applications, remains largely unknown. Herein, we investigate the fundamental molecular mechanism of protein coating formation. Polydopamine nanospheres (PDANS) coated with bovine serum albumin (BSA) are examined in this study due to their wide biomedical potential. Our results demonstrate that BSAs can flexibly bind to PDANS and maintain their structural dynamicity. Our findings unveil that regular structure formation arises from BSAs lateral interactions via electrostatic forces. Notably, the protein coating modified PDANS surface enhances cell adhesion and proliferation as well as osteogenic differentiation. Such an enhancement is attributed to complementary surface properties provided by the dynamic PDANS-BSA complex and regular structure caused by BSA-BSA interactions in protein coating formation. This study provides a fundamental understanding of the molecular mechanism of protein coating formation, which facilitates the further development of functional protein-coated nanomaterials and guides the bioengineering decision making for biomedical applications, especially in bone tissue engineering.


Asunto(s)
Nanosferas , Albúmina Sérica Bovina , Diferenciación Celular , Indoles , Osteogénesis , Polímeros
20.
Mater Sci Eng C Mater Biol Appl ; 130: 112434, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34702519

RESUMEN

Bone defects arising from injury and/or disease are a common and debilitating clinical lesion. While the development of tissue microenvironments utilizing biomimetic constructs is an emerging approach for bone tissue engineering. In this context, bioactive glass nanoparticles (BGNPs) were embedded within polycaprolactone (PCL) scaffolds. The scaffolds exhibit an engineered unidirectional pore structure which are surface activated via oxygen plasma to allow immobilization of simvastatin (SIM) on the pore surface. Microscopic observation indicated the surface modification did not disturb the lamellar orientation of the pores improving the biomimetic formation of hydroxyapatite. Mathematically modelled release profiles reveal that the oxygen plasma pre-treatment can be utilized to modulate the release profile of SIM from the scaffolds. With the release mechanism controlled by the balance between the diffusion and erosion mechanisms. Computational modelling shows that Human Serum Albumin and Human α2-macroglobulin can be utilized to increase SIM bioavailability for cells via a molecular docking mechanism. Cellular studies show positive MG-63 cell attachment and viability on optimized scaffolds with alkaline phosphatase activity enhanced along with enhanced expression of osteocalcoin biomarker.


Asunto(s)
Preparaciones Farmacéuticas , Ingeniería de Tejidos , Biomimética , Humanos , Simulación del Acoplamiento Molecular , Osteogénesis , Poliésteres , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...