Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 5: 10606, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26030085

RESUMEN

Tremendous efforts towards improvement in the critical current density "Jc" of iron based superconductors (FeSCs), especially at relatively low temperatures and magnetic fields, have been made so far through different methods, resulting in real progress. Jc at high temperatures in high fields still needs to be further improved, however, in order to meet the requirements of practical applications. Here, we demonstrate a simple approach to achieve this. Hydrostatic pressure can significantly enhance Jc in NaFe0.97Co0.03As single crystals by at least tenfold at low field and more than a hundredfold at high fields. Significant enhancement in the in-field performance of NaFe0.97Co0.03As single crystal in terms of pinning force density (Fp) is found at high pressures. At high fields, the Fp is over 20 and 80 times higher than under ambient pressure at12 K and 14 K, respectively, at P = 1 GPa. We believe that the Co-doped NaFeAs compounds are very exciting and deserve to be more intensively investigated. Finally, it is worthwhile to say that by using hydrostatic pressure, we can achieve more milestones in terms of high Jc values in tapes, wires or films of other Fe-based superconductors.

2.
Sci Rep ; 5: 8213, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25645351

RESUMEN

Pressure is well known to significantly raise the superconducting transition temperature, Tc, in both iron pnictides and cuprate based superconductors. Little work has been done, however, on how pressure can affect the flux pinning and critical current density in the Fe-based superconductors. Here, we propose to use hydrostatic pressure to significantly enhance flux pinning and Tc in polycrystalline pnictide bulks. We have chosen Sr4V2O6Fe2As2 polycrystalline samples as a case study. We demonstrate that the hydrostatic pressure up to 1.2 GPa can not only significantly increase Tc from 15 K (underdoped) to 22 K, but also significantly enhance the irreversibility field, Hirr, by a factor of 4 at 7 K, as well as the critical current density, Jc, by up to 30 times at both low and high fields. It was found that pressure can induce more point defects, which are mainly responsible for the Jc enhancement. Our findings provide an effective method to significantly enhance Tc, Jc, Hirr, and the upper critical field, Hc2, for other families of Fe-based superconductors in the forms of wires/tapes, films, and single crystal and polycrystalline bulks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA