Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nanotechnology ; 35(17)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38253004

RESUMEN

Epitaxial growth is a versatile method to prepare two-dimensional van der Waals ferroelectrics like group IV monochalcogenides which have potential for novel electronic devices and sensors. We systematically study SnSe monolayer islands grown by molecular beam epitaxy, especially the effect of annealing temperature on shape and morphology of the edges. Characterization of the samples by scanning tunneling microscopy reveals that the shape of the islands changes from fractal-dendritic after deposition at room temperature to a compact rhombic shape through annealing, but ripening processes are absent up to the desorption temperature. A two-step growth process leads to large, epitaxially aligned rhombic islands bounded by well-defined110-edges (armchair-like), which we claim to be the equilibrium shape of the stoichiometric SnSe monolayer islands. The relaxation of the energetically favorable edges is detected in atomically resolved STM images. The experimental findings are supported by the results of our first-principles calculations, which provide insights into the energetics of the edges, their reconstructions, and yields the equilibrium shapes of the islands which are in good agreement with the experiment.

2.
Sci Adv ; 7(8)2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33597249

RESUMEN

Luminescent centers in the two-dimensional material hexagonal boron nitride have the potential to enable quantum applications at room temperature. To be used for applications, it is crucial to generate these centers in a controlled manner and to identify their microscopic nature. Here, we present a method inspired by irradiation engineering with oxygen atoms. We systematically explore the influence of the kinetic energy and the irradiation fluence on the generation of luminescent centers. We find modifications of their density for both parameters, while a fivefold enhancement is observed with increasing fluence. Molecular dynamics simulations clarify the generation mechanism of these centers and their microscopic nature. We infer that VNCB and [Formula: see text] are the most likely centers formed. Ab initio calculations of their optical properties show excellent agreement with our experiments. Our methodology generates quantum emitters in a controlled manner and provides insights into their microscopic nature.

3.
Nanoscale Adv ; 3(24): 6992-7001, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36132369

RESUMEN

The adsorption and dissociation of water molecules on two-dimensional transition metal dichalcogenides (TMDs) is expected to be dominated by point defects, such as vacancies, and edges. At the same time, the role of grain boundaries, and particularly, mirror twinboundaries (MTBs), whose concentration in TMDs can be quite high, is not fully understood. Using density functional theory calculations, we investigate the interaction of water, hydroxyl groups, as well as oxygen and hydrogen molecules with MoSe2 monolayers when MTBs of various types are present. We show that the adsorption of all species on MTBs is energetically favorable as compared to that on the basal plane of pristine MoSe2, but the interaction with Se vacancies is stronger. We further assess the energetics of various surface chemical reactions involving oxygen and hydrogen atoms. Our results indicate that water dissociation on the basal plane should be dominated by vacancies even when MTBs are present, but they facilitate water clustering through hydroxyl groups at MTBs, which can anchor water molecules and give rise to the decoration of MTBs with water clusters. Also, the presence of MTBs affects oxygen reduction reaction (ORR) on the MoSe2 monolayer. Unlike Se vacancies which inhibit ORR due to a high overpotential, it is found that the ORR process on MTBs is more efficient, indicating their important role in the catalytic activity of MoSe2 monolayer and likely other TMDs.

4.
J Phys Chem Lett ; 10(21): 6492-6498, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31589053

RESUMEN

Two-dimensional (2D) membranes consisting of a single layer of Mo atoms were recently manufactured [ Adv. Mater. 2018 , 30 , 1707281 ] from MoSe2 sheets by sputtering Se atoms using an electron beam in a transmission electron microscope. This is an unexpected result as formation of Mo clusters should energetically be more favorable. To get microscopic insights into the energetics of realistic Mo membranes and nonstoichiometric phases of transition-metal dichalcogenides (TMDs) MaXb, where M = Mo and W and X = S, Se, and Te, we carry out first-principles calculations and demonstrate that the membranes, which can be referred to as metallic quantum dots embedded into a semiconducting matrix, can be stabilized by charge transfer. We also show that an ideal neutral 2D Mo or W sheet is not flat but a corrugated structure, with a square lattice being the lowest-energy configuration. We further demonstrate that several intermediate nonstoichiometric phases of TMDs are possible as they have lower formation energies than pure metal membranes. Among them, the orthorhombic metallic 2D M4X4 phase is particularly stable. Finally, we study the properties of this phase in detail and discuss how it can be manufactured by the top-down approaches.

5.
Nanoscale ; 9(31): 11027-11034, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28660978

RESUMEN

Two-dimensional transition metal dichalcogenides (TMDCs) exhibit excellent optoelectronic properties. However, the large band gaps in many semiconducting TMDCs make optical absorption in the near-infrared (NIR) wavelength regime impossible, which prevents applications of these materials in optical communications. In this work, we demonstrate that Ar+ ion irradiation is a powerful post-synthesis technique to tailor the optical properties of the semiconducting tungsten disulfide (WS2) by creating S-vacancies and thus controlling material stoichiometry. First-principles calculations reveal that the S-vacancies give rise to deep states in the band gap, which determine the NIR optical absorption of the WS2 monolayer. As the density of the S-vacancies increases, the enhanced NIR linear and saturable absorption of WS2 is observed, which is explained by the results of first-principles calculations. We further demonstrate that by using the irradiated WS2 as a saturable absorber in a waveguide system, the passively Q-switched laser operations can be optimized, thus opening new avenues for tailoring the optical response of TMDCs by defect-engineering through ion irradiation.

6.
Nanoscale ; 8(48): 20080-20089, 2016 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-27892592

RESUMEN

Record high values of Young's modulus and tensile strength of graphene and BN nanoribbons as well as their chemically active edges make them promising candidates for serving as fillers in metal-based composite materials. Herein, using ab initio and analytical potential calculations we carry out a systematic study of the mechanical properties of nanocomposites constructed by reinforcing an Al matrix with BN and graphene nanoribbons. We consider a simple case of uniform distribution of nanoribbons in an Al matrix under the assumption that such configuration will lead to the maximum enhancement of mechanical characteristics. We estimate the bonding energy and the interfacial critical shear stress at the ribbon/metal interface as functions of ribbon width and show that the introduction of nanoribbons into the metal leads to a substantial increase in the mechanical characteristics of the composite material, as strong covalent bonding between the ribbon edges and Al matrix provides efficient load transfer from the metal to the ribbons. Using the obtained data, we apply the rule of mixtures in order to analytically assess the relationship between the composite strength and concentration of nanoribbons. Finally, we study carbon chains, which can be referred to as the ultimately narrow ribbons, and find that they are not the best fillers due to their weak interaction with the Al matrix. Simulations of the electronic transport properties of the composites with graphene nanoribbons and carbyne chains embedded into Al show that the inclusion of the C phase gives rise to deterioration in the current carrying capacity of the material, but the drop is relatively small, so that the composite material can still transmit current well, if required.

7.
Nano Lett ; 16(7): 4410-6, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27336595

RESUMEN

By combining high-resolution transmission electron microscopy and associated analytical methods with first-principles calculations, we study the behavior of layered tin dichalcogenides under electron beam irradiation. We demonstrate that the controllable removal of chalcogen atoms due to electron irradiation, at both room and elevated temperatures, gives rise to transformations in the atomic structure of Sn-S and Sn-Se systems so that new phases with different properties can be induced. In particular, rhombohedral layered SnS2 and SnSe2 can be transformed via electron beam induced loss of chalcogen atoms into highly anisotropic orthorhombic layered SnS and SnSe. A striking dependence of the layer orientation of the resulting SnS-parallel to the layers of ultrathin SnS2 starting material, but slanted for transformations of thicker few-layer SnS2-is rationalized by a transformation pathway in which vacancies group into ordered S-vacancy lines, which convert via a Sn2S3 intermediate to SnS. Absence of a stable Sn2Se3 intermediate precludes this pathway for the selenides, hence SnSe2 always transforms into basal plane oriented SnSe. Our results provide microscopic insights into the transformation mechanism and show how irradiation can be used to tune the properties of layered tin chalcogenides for applications in electronics, catalysis, or energy storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...