Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Syst Biol ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702390

RESUMEN

The physical interactome of a protein can be altered upon perturbation, modulating cell physiology and contributing to disease. Identifying interactome differences of normal and disease states of proteins could help understand disease mechanisms, but current methods do not pinpoint structure-specific PPIs and interaction interfaces proteome-wide. We used limited proteolysis-mass spectrometry (LiP-MS) to screen for structure-specific PPIs by probing for protease susceptibility changes of proteins in cellular extracts upon treatment with specific structural states of a protein. We first demonstrated that LiP-MS detects well-characterized PPIs, including antibody-target protein interactions and interactions with membrane proteins, and that it pinpoints interfaces, including epitopes. We then applied the approach to study conformation-specific interactors of the Parkinson's disease hallmark protein alpha-synuclein (aSyn). We identified known interactors of aSyn monomer and amyloid fibrils and provide a resource of novel putative conformation-specific aSyn interactors for validation in further studies. We also used our approach on GDP- and GTP-bound forms of two Rab GTPases, showing detection of differential candidate interactors of conformationally similar proteins. This approach is applicable to screen for structure-specific interactomes of any protein, including posttranslationally modified and unmodified, or metabolite-bound and unbound protein states.

2.
Nanoscale ; 15(35): 14606-14614, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37614107

RESUMEN

A better understanding of the abnormal protein aggregation and the effect of anti-aggregation agents on the fibrillation pathways and the secondary structure of aggregates can determine strategies for the early treatment of dementia. Herein, we present a combination of experimental and theoretical studies providing new insights into the influence of the anti-aggregation drug bexarotene on the secondary structure of individual amyloid-ß aggregates and its primary aggregation. The molecular rearrangements and the spatial distribution of ß-sheets within individual aggregates were monitored at the nanoscale with infrared nanospectroscopy. We observed that bexarotene limits the parallel ß-sheets formation, known to be highly abundant in fibrils at later phases of the amyloid-ß aggregation composed of in-register cross-ß structure. Moreover, we applied molecular dynamics to provide molecular-level insights into the investigated system. Both theoretical and experimental results revealed that bexarotene slows down the protein aggregation process via steric effects, largely prohibiting the antiparallel to parallel ß-sheet rearrangement. We also found that bexarotene interacts not only via the single hydrogen bond formation with the peptide backbone but also with the amino acid side residue via a hydrophobic effect. The studied model of the drug-amyloid-ß interaction contributes to a better understanding of the inhibition mechanism of the amyloid-ß aggregation by the small molecule drugs. However, our nanoscale findings need to meet in vivo research requiring different analytical approaches.


Asunto(s)
Péptidos beta-Amiloides , Agregado de Proteínas , Bexaroteno/farmacología , Aminoácidos
3.
Methods Mol Biol ; 2551: 41-51, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36310195

RESUMEN

Amyloid-beta (Aß) aggregation into soluble oligomers and fibril formation are associated with Alzheimer's disease (AD) pathogenesis. Aß1-42 is the major form of the Aß peptide present in neuritic plaques and shown to be neurotoxic both in vivo and in vitro. However, understanding the mechanism of its toxicity, aggregation, and other biochemical properties is limited because of its difficult production (recombinant or synthetic) and irreproducibility issues attributed to batch-to-batch preparation differences. Chemically synthetic Aß1-42 is now well established, but it always introduces up to 5% D-isomers along with its L-isomeric form, and thus it is not fruitful for biochemical/structural studies. Here, we optimized an efficient published method for expression and purification of Aß1-42 upon overexpression in Escherichia coli (E. coli) that provides a satisfactory yield as well as minimizes the variability between batch preparations. With the present protocol, ~7-8 mg/liter of unlabeled peptide and ~3.5-4 mg/liter for 13C,15N-labeled (double-labeled) Aß1-42 were obtained.


Asunto(s)
Enfermedad de Alzheimer , Infecciones por Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Péptidos beta-Amiloides/química , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/metabolismo
4.
Front Bioeng Biotechnol ; 11: 1333752, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38318419

RESUMEN

Carbon quantum dots (CQDs) are gaining a lot more attention than traditional semiconductor quantum dots owing to their intrinsic fluorescence property, chemical inertness, biocompatibility, non-toxicity, and simple and inexpensive synthetic route of preparation. These properties allow CQDs to be utilized for a broad range of applications in various fields of scientific research including biomedical sciences, particularly in bioimaging and biomedicines. CQDs are a promising choice for advanced nanomaterials research for bioimaging and biomedicines owing to their unique chemical, physical, and optical properties. CQDs doped with hetero atom, or polymer composite materials are extremely advantageous for biochemical, biological, and biomedical applications since they are easy to prepare, biocompatible, and have beneficial properties. This type of CQD is highly useful in phototherapy, gene therapy, medication delivery, and bioimaging. This review explores the applications of CQDs in bioimaging and biomedicine, highlighting recent advancements and future possibilities to increase interest in their numerous advantages for therapeutic applications.

5.
Commun Biol ; 5(1): 1322, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460747

RESUMEN

Most experimental methods for structural biology proceed in vitro and therefore the contribution of the intracellular environment on protein structure and dynamics is absent. Studying proteins at atomic resolution in living mammalian cells has been elusive due to the lack of methodologies. In-cell nuclear magnetic resonance spectroscopy (in-cell NMR) is an emerging technique with the power to do so. Here, we improved current methods of in-cell NMR by the development of a reporter system that allows monitoring the delivery of exogenous proteins into mammalian cells, a process that we called here "transexpression". The reporter system was used to develop an efficient protocol for in-cell NMR which enables spectral acquisition with higher quality for both disordered and folded proteins. With this method, the 3D atomic resolution structure of the model protein GB1 in human cells was determined with a backbone root-mean-square deviation (RMSD) of 1.1 Å.


Asunto(s)
Imagen por Resonancia Magnética , Animales , Humanos , Espectroscopía de Resonancia Magnética , Mamíferos
6.
Angew Chem Int Ed Engl ; 61(46): e202205858, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36115062

RESUMEN

SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Proteoma , Ligandos , Diseño de Fármacos
7.
Biochemistry ; 60(48): 3676-3696, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34431665

RESUMEN

Liquid-liquid phase separation (LLPS) is a crucial phenomenon for the formation of functional membraneless organelles. However, LLPS is also responsible for protein aggregation in various neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease (PD). Recently, several reports, including ours, have shown that α-synuclein (α-Syn) undergoes LLPS and a subsequent liquid-to-solid phase transition, which leads to amyloid fibril formation. However, how the environmental (and experimental) parameters modulate the α-Syn LLPS remains elusive. Here, we show that in vitro α-Syn LLPS is strongly dependent on the presence of salts, which allows charge neutralization at both terminal segments of protein and therefore promotes hydrophobic interactions supportive for LLPS. Using various purification methods and experimental conditions, we showed, depending upon conditions, α-Syn undergoes either spontaneous (instantaneous) or delayed LLPS. Furthermore, we delineate that the kinetics of liquid droplet formation (i.e., the critical concentration and critical time) is relative and can be modulated by the salt/counterion concentration, pH, presence of surface, PD-associated multivalent cations, and N-terminal acetylation, which are all known to regulate α-Syn aggregation in vitro. Together, our observations suggest that α-Syn LLPS and subsequent liquid-to-solid phase transition could be pathological, which can be triggered only under disease-associated conditions (high critical concentration and/or conditions promoting α-Syn self-assembly). This study will significantly improve our understanding of the molecular mechanisms of α-Syn LLPS and the liquid-to-solid transition.


Asunto(s)
Amiloide/química , Agregación Patológica de Proteínas/genética , alfa-Sinucleína/química , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Amiloide/genética , Amiloide/ultraestructura , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Transición de Fase , Agregación Patológica de Proteínas/patología , alfa-Sinucleína/genética , alfa-Sinucleína/ultraestructura
8.
Front Mol Biosci ; 8: 653148, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34041264

RESUMEN

The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium's collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.

9.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649211

RESUMEN

Protein aggregation into amyloid fibrils is associated with multiple neurodegenerative diseases, including Parkinson's disease. Kinetic data and biophysical characterization have shown that the secondary nucleation pathway highly accelerates aggregation via the absorption of monomeric protein on the surface of amyloid fibrils. Here, we used NMR and electron paramagnetic resonance spectroscopy to investigate the interaction of monomeric α-synuclein (α-Syn) with its fibrillar form. We demonstrate that α-Syn monomers interact transiently via their positively charged N terminus with the negatively charged flexible C-terminal ends of the fibrils. These intermolecular interactions reduce intramolecular contacts in monomeric α-Syn, yielding further unfolding of the partially collapsed intrinsically disordered states of α-Syn along with a possible increase in the local concentration of soluble α-Syn and alignment of individual monomers on the fibril surface. Our data indicate that intramolecular unfolding critically contributes to the aggregation kinetics of α-Syn during secondary nucleation.


Asunto(s)
Agregado de Proteínas , Desplegamiento Proteico , alfa-Sinucleína/química , Humanos , Cinética , Relación Estructura-Actividad
10.
Angew Chem Int Ed Engl ; 59(49): 22132-22139, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32797659

RESUMEN

Protein allostery is a phenomenon involving the long range coupling between two distal sites in a protein. In order to elucidate allostery at atomic resoluion on the ligand-binding WW domain of the enzyme Pin1, multistate structures were calculated from exact nuclear Overhauser effect (eNOE). In its free form, the protein undergoes a microsecond exchange between two states, one of which is predisposed to interact with its parent catalytic domain. In presence of the positive allosteric ligand, the equilibrium between the two states is shifted towards domain-domain interaction, suggesting a population shift model. In contrast, the allostery-suppressing ligand decouples the side-chain arrangement at the inter-domain interface thereby reducing the inter-domain interaction. As such, this mechanism is an example of dynamic allostery. The presented distinct modes of action highlight the power of the interplay between dynamics and function in the biological activity of proteins.


Asunto(s)
Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Regulación Alostérica , Humanos , Modelos Moleculares , Peptidilprolil Isomerasa de Interacción con NIMA/química
11.
Neurobiol Dis ; 139: 104833, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32173555

RESUMEN

Alzheimer's disease (AD) is characterized by the presence of proteinaceous brain deposits, brain atrophy, vascular dysfunction, and chronic inflammation. Along with cerebral inflammation, peripheral inflammation is also evident in many AD patients. Bradykinin, a proinflammatory plasma peptide, is also linked to AD pathology. For example, bradykinin infusion into the hippocampus causes learning and memory deficits in rats, and blockade of the bradykinin receptor lessens cognitive impairment in AD mouse models. Even though it has been hypothesized that plasma bradykinin could contribute to inflammation in AD, the level of plasma bradykinin and its association with beta-amyloid (Aß) pathology in AD patients had not been explored. Here, we assessed plasma bradykinin levels in AD patients and age-matched non-demented (ND) control individuals. We found significantly elevated plasma bradykinin levels in AD patients compared to ND subjects. Additionally, changes in plasma bradykinin levels were more profound in many AD patients with severe cognitive impairment, suggesting that peripheral bradykinin could play a role in dementia most likely via inflammation. Bradykinin levels in the cerebrospinal fluid (CSF) were reduced in AD patients and exhibited an inverse correlation with the CSF Aß40/Aß42 ratio. We also report that bradykinin interacts with the fibrillar form of Aß and co-localizes with Aß plaques in the post-mortem human AD brain. These findings connect the peripheral inflammatory pathway to cerebral abnormalities and identify a novel mechanism of inflammatory pathology in AD.


Asunto(s)
Enfermedad de Alzheimer/sangre , Bradiquinina/sangre , Disfunción Cognitiva/sangre , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/sangre , Apolipoproteínas E/líquido cefalorraquídeo , Biomarcadores/sangre , Bradiquinina/líquido cefalorraquídeo , Estudios de Casos y Controles , Disfunción Cognitiva/líquido cefalorraquídeo , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Placa Amiloide/sangre
12.
RSC Med Chem ; 11(5): 591-596, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479661

RESUMEN

Recently we have established an NMR molecular replacement method, which is capable of solving the structure of the interaction site of protein-ligand complexes in a fully automated manner. While the method was successfully applied for ligands with strong and weak binding affinities, including small molecules and peptides, its applicability on ligand fragments remains to be shown. Structures of fragment-protein complexes are more challenging for the method since fragments contain only few protons. Here we show a successful application of the NMR molecular replacement method in solving structures of complexes between three derivatives of a ligand fragment and the protein receptor PIN1. We anticipate that this approach will find a broad application in fragment-based lead discovery.

13.
Nature ; 577(7788): 127-132, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31802003

RESUMEN

Neurodegeneration in patients with Parkinson's disease is correlated with the occurrence of Lewy bodies-intracellular inclusions that contain aggregates of the intrinsically disordered protein α-synuclein1. The aggregation propensity of α-synuclein in cells is modulated by specific factors that include post-translational modifications2,3, Abelson-kinase-mediated phosphorylation4,5 and interactions with intracellular machineries such as molecular chaperones, although the underlying mechanisms are unclear6-8. Here we systematically characterize the interaction of molecular chaperones with α-synuclein in vitro as well as in cells at the atomic level. We find that six highly divergent molecular chaperones commonly recognize a canonical motif in α-synuclein, consisting of the N terminus and a segment around Tyr39, and hinder the aggregation of α-synuclein. NMR experiments9 in cells show that the same transient interaction pattern is preserved inside living mammalian cells. Specific inhibition of the interactions between α-synuclein and the chaperone HSC70 and members of the HSP90 family, including HSP90ß, results in transient membrane binding and triggers a remarkable re-localization of α-synuclein to the mitochondria and concomitant formation of aggregates. Phosphorylation of α-synuclein at Tyr39 directly impairs the interaction of α-synuclein with chaperones, thus providing a functional explanation for the role of Abelson kinase in Parkinson's disease. Our results establish a master regulatory mechanism of α-synuclein function and aggregation in mammalian cells, extending the functional repertoire of molecular chaperones and highlighting new perspectives for therapeutic interventions for Parkinson's disease.


Asunto(s)
alfa-Sinucleína/metabolismo , Supervivencia Celular , Células HEK293 , Humanos , Espectroscopía de Resonancia Magnética , Chaperonas Moleculares/metabolismo , Procesamiento Proteico-Postraduccional , alfa-Sinucleína/genética
14.
Chembiochem ; 20(9): 1161-1166, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30548150

RESUMEN

Amyloid fibrils are pathological hallmarks of various human diseases, including Parkinson's, Alzheimer's, amyotrophic lateral sclerosis (ALS or motor neurone disease), and prion diseases. Treatment of the amyloid diseases are hindered, among other factors, by timely detection and therefore, early detection of the amyloid fibrils would be beneficial for treatment against these disorders. Here, a small molecular fluorescent probe is reported that selectively recognize the fibrillar form of amyloid beta(1-42), α-synuclein, and HET-s(218-289) protein over their monomeric conformation. The rational design of the reporters relies on the well-known cross-ß-sheet repetition motif, the key structural feature of amyloids.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Colorantes Fluorescentes/metabolismo , Proteínas Fúngicas/metabolismo , Fragmentos de Péptidos/metabolismo , alfa-Sinucleína/metabolismo , Fluorescencia , Colorantes Fluorescentes/química , Humanos , Estructura Molecular , Podospora/química , Unión Proteica , Espectrometría de Fluorescencia
15.
ACS Biomater Sci Eng ; 5(1): 126-138, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33405876

RESUMEN

Amyloid fibrils are cross-ß-sheet-rich protein/peptide fibrils that are typically associated with neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Recently, functional amyloids have been discovered where amyloids are implicated in performing normal physiological functions of the host organism rather than creating diseases. The ability of amyloids to interact with the cell membrane and other small biomolecules exhibits its great potential to be used as a biomaterial for cell adhesion and gene delivery system. Given the established ability of semen-derived amyloids to concentrate HIV in semen and that of charged polymers as an enhancer of retroviral gene transfer, we hypothesized that charged amyloid fibrils can augment virus-mediated delivery system. We show that amyloids of α-synuclein formed in the presence and absence of cationic polymers chitosan and amyloid of poly-l-lysine can interact with lentiviral particles and enhance transduction efficiency in cells. The amyloid nanofibrils increase transduction efficiency up to ∼4 fold similar to widely used cationic polymer Polybrene. This study shows that amyloid nanofibril scaffolds may be used as targeted gene delivery systems.

16.
OMICS ; 22(12): 759-769, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30571610

RESUMEN

The pituitary function is regulated by a complex system involving the hypothalamus and biological networks within the pituitary. Although the hormones secreted from the pituitary have been well studied, comprehensive analyses of the pituitary proteome are limited. Pituitary proteomics is a field of postgenomic research that is crucial to understand human health and pituitary diseases. In this context, we report here a systematic proteomic profiling of human anterior pituitary gland (adenohypophysis) using high-resolution Fourier transform mass spectrometry. A total of 2164 proteins were identified in this study, of which 105 proteins were identified for the first time compared with high-throughput proteomic-based studies from human pituitary glands. In addition, we identified 480 proteins with secretory potential and 187 N-terminally acetylated proteins. These are the first region-specific data that could serve as a vital resource for further investigations on the physiological role of the human anterior pituitary glands and the proteins secreted by them. We anticipate that the identification of previously unknown proteins in the present study will accelerate biomedical research to decipher their role in functioning of the human anterior pituitary gland and associated human diseases.


Asunto(s)
Adenohipófisis/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Cromatografía Liquida , Humanos , Espectrometría de Masas
17.
Biochemistry ; 57(33): 5014-5028, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30025458

RESUMEN

Amyloid formation of α-synuclein (α-Syn) and its familial mutations are directly linked with Parkinson's disease (PD) pathogenesis. Recently, a new familial α-Syn mutation (A53E) was discovered, associated with an early onset aggressive form of PD, which delays α-Syn aggregation. When we overexpressed wild-type (WT) and A53E proteins in cells, showed neither toxicity nor aggregate formation, suggesting merely overexpression may not recapitulate the PD phenotype in cell models. We hypothesized that cells expressing the A53E mutant might possess enhanced susceptibility to PD-associated toxicants compared to that of the WT. When cells were treated with PD toxicants (dopamine and rotenone), cells expressing A53E showed more susceptibility to cell death along with compromised mitochondrial potential and an increased production of reactive oxygen species. The higher toxicity of A53E could be due to more oligomers being formed in cells as confirmed by a dot blot assay using amyloid specific OC and A11 antibody and using an  in vitro aggregation study. The cellular model presented here suggests that along with familial mutation, environmental and other cellular factors might play a crucial role in dictating PD pathogenesis.


Asunto(s)
Apoptosis/efectos de los fármacos , Dopamina/toxicidad , Agregado de Proteínas/genética , Rotenona/toxicidad , alfa-Sinucleína/metabolismo , Línea Celular Tumoral , Humanos , Cinética , Potencial de la Membrana Mitocondrial , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Mutación , Agregación Patológica de Proteínas/metabolismo , Multimerización de Proteína , Especies Reactivas de Oxígeno/metabolismo , alfa-Sinucleína/genética
18.
J Biol Chem ; 293(34): 12975-12991, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-29959225

RESUMEN

Parkinson's disease is mainly a sporadic disorder in which both environmental and cellular factors play a major role in the initiation of this disease. Glycosaminoglycans (GAG) are integral components of the extracellular matrix and are known to influence amyloid aggregation of several proteins, including α-synuclein (α-Syn). However, the mechanism by which different GAGs and related biological polymers influence protein aggregation and the structure and intercellular spread of these aggregates remains elusive. In this study, we used three different GAGs and related charged polymers to establish their role in α-Syn aggregation and associated biological activities of these aggregates. Heparin, a representative GAG, affected α-Syn aggregation in a concentration-dependent manner, whereas biphasic α-Syn aggregation kinetics was observed in the presence of chondroitin sulfate B. Of note, as indicated by 2D NMR analysis, different GAGs uniquely modulated α-Syn aggregation because of the diversity of their interactions with soluble α-Syn. Moreover, subtle differences in the GAG backbone structure and charge density significantly altered the properties of the resulting amyloid fibrils. Each GAG/polymer facilitated the formation of morphologically and structurally distinct α-Syn amyloids, which not only displayed variable levels of cytotoxicity but also exhibited an altered ability to internalize into cells. Our study supports the role of GAGs as key modulators in α-Syn amyloid formation, and their distinct activities may regulate amyloidogenesis depending on the type of GAG being up- or down-regulated in vivo.


Asunto(s)
Amiloide/química , Regulación de la Expresión Génica/efectos de los fármacos , Glicosaminoglicanos/farmacología , Polímeros/química , Agregado de Proteínas/efectos de los fármacos , alfa-Sinucleína/química , Proliferación Celular , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Células Tumorales Cultivadas , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
19.
Biochemistry ; 57(5): 791-804, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29286644

RESUMEN

Aggregation of α-synuclein (α-Syn) into neurotoxic oligomers and amyloid fibrils is suggested to be the pathogenic mechanism for Parkinson's disease (PD). Recent studies have indicated that oligomeric species of α-Syn are more cytotoxic than their mature fibrillar counterparts, which are responsible for dopaminergic neuronal cell death in PD. Therefore, the effective therapeutic strategies for tackling aggregation-associated diseases would be either to prevent aggregation or to modulate the aggregation process to minimize the formation of toxic oligomers during aggregation. In this work, we showed that arginine-substituted α-Syn ligands, based on the most aggregation-prone sequence of α-Syn, accelerate the protein aggregation in a concentration-dependent manner. To elucidate the mechanism by which Arg-substituted peptides could modulate α-Syn aggregation kinetics, we performed surface plasmon resonance (SPR) spectroscopy, nuclear magnetic resonance (NMR) studies, and all-atom molecular dynamics (MD) simulation. The SPR analysis showed a high binding potency of these peptides with α-Syn but one that was nonspecific in nature. The two-dimensional NMR studies suggest that a large stretch within the C-terminus of α-Syn displays a chemical shift perturbation upon interacting with Arg-substituted peptides, indicating C-terminal residues of α-Syn might be responsible for this class of peptide binding. This is further supported by MD simulation studies in which the Arg-substituted peptide showed the strongest interaction with the C-terminus of α-Syn. Overall, our results suggest that the binding of Arg-substituted ligands to the highly acidic C-terminus of α-Syn leads to reduced charge density and flexibility, resulting in accelerated aggregation kinetics. This may be a potentially useful strategy while designing peptides, which act as α-Syn aggregation modulators.


Asunto(s)
Amiloide/química , Arginina/química , Fragmentos de Péptidos/antagonistas & inhibidores , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/prevención & control , alfa-Sinucleína/antagonistas & inhibidores , Sustitución de Aminoácidos , Amiloide/toxicidad , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Simulación de Dinámica Molecular , Neuroblastoma/patología , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/toxicidad , Dominios Proteicos , Resonancia por Plasmón de Superficie , alfa-Sinucleína/química , alfa-Sinucleína/toxicidad
20.
ACS Chem Neurosci ; 8(12): 2722-2733, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28872299

RESUMEN

Aggregation of α-synuclein (α-Syn) into toxic oligomers and fibrils leads to Parkinson's disease (PD) pathogenesis. Molecules that can inhibit the fibrillization and oligomerization of α-Syn have potential therapeutic value. Here, we studied four selective amyloid inhibitors: dopamine (Dopa), amphotericin-B (Amph), epigallocatechingallate (EGCG), and quinacrinedihydrochloride (Quin) for their effect on oligomerization, fibrillization, and preformed fibrils of α-Syn. The aggregation kinetics of α-Syn using ThT fluorescence and conformational transition by circular dichroism (CD) in the presence and absence of these four compounds suggest that, except Quin, the remaining three molecules inhibit α-Syn aggregation in a concentration dependent manner. Consistent with the aggregation kinetics data, the morphological study of aggregates formed in the presence of these compounds showed corresponding decrease in fibrillar size. The analysis of cell viability using MTT assay showed reduction in toxicity of α-Syn aggregates formed in the presence of these compounds, which also correlates with reduction of exposed hydrophobic surface as studied by ANS binding. Additionally, these inhibitors, except Quin, demonstrated reduction in size as well as the toxicity of oligomeric/fibrillar aggregates of α-Syn. The residue specific interaction to low molecular weight (LMW) species of α-Syn by 2D NMR study revealed that, the region and extent of binding are different for all these molecules. Furthermore, fibril-binding data using SPR suggested that there is no direct relationship between the binding affinity and fibril inhibition by these compounds. The present study suggests that sequence based interaction of small molecules with soluble α-Syn might dictate their inhibition or modulation capacity, which might be helpful in designing modulators of α-Syn aggregation.


Asunto(s)
Anfotericina B/química , Amiloide/antagonistas & inhibidores , Catequina/análogos & derivados , Dopamina/química , Fármacos Neuroprotectores/química , alfa-Sinucleína/antagonistas & inhibidores , Amiloide/ultraestructura , Sitios de Unión , Catequina/química , Cinética , Unión Proteica , alfa-Sinucleína/química , alfa-Sinucleína/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...