Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39149499

RESUMEN

Metabolic disorders such as insulin resistance and hypertension are potential risk factors for aging and neurodegenerative diseases. These conditions are reversed in Chromogranin A knockout (CgA-KO) mice. This study investigates the role of CgA in Alzheimer's disease (AD) and corticobasal degeneration (CBD). CgA ablation in tauopathy mice (hTau) (CgA-KO/hTau) exhibited reduced tau aggregation, spreading, extended lifespan, and improved cognitive function. Transcriptomic and metabolite analysis of mouse cortices revealed altered alpha1-adrenergic receptors (Adra1) and high epinephrine (EPI) levels in hTau mice compared to WT mice, mirroring observations in AD and CBD patients. CgA-KO/hTau mice exhibited a reversal of EPI levels in the cortex and the expression of Adra1, nearly returning them to WT levels. Treatment of hippocampal slices with EPI or Adra1 agonist intensified, while an Adra1 antagonist inhibited tau hyperphosphorylation and aggregation. These findings highlight the interplay between the EPI-Adra signaling system and CgA in tauopathy.

2.
bioRxiv ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38979190

RESUMEN

The overexpression of proto-oncogene Bcl3 is observed in various cancers. Bcl3 is extensively phosphorylated and associates with homodimers of NF-κB p50 and p52 to regulate transcription. Through cellular and biochemical assays, we observed that phospho-mimetic Glu substitution at Ser366 in addition to previously studied Ser33, 114 and 446 is necessary to switch Bcl3 from an IκB-like inhibitor to a transcriptional activator. To study interactive features of p52 and Bcl3, and phosphorylation- mediated changes in Bcl3 that regulate DNA-binding by p52, we performed HDX-MS of both Bcl3 and p52 within various complexes. Nature of interactions within Bcl3:(p52:p52) complex in presence and absence of DNA, differential flexibility of Bcl3, and allosteric changes in Bcl3 upon phospho-modifications revealed why a facile accommodation of DNA requires phosphorylation. The inhibitory nature of unphosphorylated Bcl3 on DNA binding by p52:p52 also relieved by a C-terminal deletion of Bcl3. Overall, this study revealed mechanistic bases of how Bcl3 phosphorylation regulates transcriptional potential of NF-κB and intricate cell physiology, a dysregulation of which can lead to cancers.

3.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915622

RESUMEN

Our previous studies have indicated that insulin resistance, hyperglycemia, and hypertension in aged wild-type (WT) mice can be reversed in mice lacking chromogranin-A (CgA-KO mice). These health conditions are associated with a higher risk of Alzheimer's disease (AD). CgA, a neuroendocrine secretory protein has been detected in protein aggregates in the brains of AD patients. Here, we determined the role of CgA in tauopathies, including AD (secondary tauopathy) and corticobasal degeneration (CBD, primary tauopathy). We found elevated levels of CgA in both AD and CBD brains, which were positively correlated with increased phosphorylated tau in the frontal cortex. Furthermore, CgA ablation in a human P301S tau (hTau) transgenic mice (CgA-KO/hTau) exhibited reduced tau aggregation, resistance to tau spreading, and an extended lifespan, coupled with improved cognitive function. Transcriptomic analysis of mice cortices highlighted altered levels of alpha-adrenergic receptors (Adra) in hTau mice compared to WT mice, akin to AD patients. Since CgA regulates the release of the Adra ligands epinephrine (EPI) and norepinephrine (NE), we determined their levels and found elevated EPI levels in the cortices of hTau mice, AD and CBD patients. CgA-KO/hTau mice exhibited reversal of EPI levels in the cortex and the expression of several affected genes, including Adra1 and 2, nearly returning them to WT levels. Treatment of hippocampal slice cultures with EPI or an Adra1 agonist intensified, while an Adra1 antagonist inhibited, tau hyperphosphorylation and aggregation. These findings reveal a critical role of CgA in regulation of tau pathogenesis via the EPI-Adra signaling axis.

4.
Proc Natl Acad Sci U S A ; 121(23): e2405555121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805268

RESUMEN

The dimeric nuclear factor kappa B (NF-κB) transcription factors (TFs) regulate gene expression by binding to a variety of κB DNA elements with conserved G:C-rich flanking sequences enclosing a degenerate central region. Toward defining mechanistic principles of affinity regulated by degeneracy, we observed an unusual dependence of the affinity of RelA on the identity of the central base pair, which appears to be noncontacted in the complex crystal structures. The affinity of κB sites with A or T at the central position is ~10-fold higher than with G or C. The crystal structures of neither the complexes nor the free κB DNAs could explain the differences in affinity. Interestingly, differential dynamics of several residues were revealed in molecular dynamics simulation studies, where simulation replicates totaling 148 µs were performed on NF-κB:DNA complexes and free κB DNAs. Notably, Arg187 and Arg124 exhibited selectivity in transient interactions that orchestrated a complex interplay among several DNA-interacting residues in the central region. Binding and simulation studies with mutants supported these observations of transient interactions dictating specificity. In combination with published reports, this work provides insights into the nuanced mechanisms governing the discriminatory binding of NF-κB family TFs to κB DNA elements and sheds light on cancer pathogenesis of cRel, a close homolog of RelA.


Asunto(s)
ADN , Simulación de Dinámica Molecular , FN-kappa B , Unión Proteica , ADN/metabolismo , Humanos , FN-kappa B/metabolismo , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética , Sitios de Unión , Cristalografía por Rayos X
5.
bioRxiv ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37732175

RESUMEN

Rapid and high-fidelity phosphorylation of two serines (S32 and S36) of IκBα by a prototype Ser/Thr kinase IKK2 is critical for fruitful canonical NF-κB activation. Here, we report that IKK2 is a dual specificity Ser/Thr kinase that autophosphorylates itself at tyrosine residues in addition to its activation loop serines. Mutation of one such tyrosine, Y169, located in proximity to the active site, to phenylalanine, renders IKK2 inactive for phosphorylation of S32 of IκBα. Surprisingly, auto-phosphorylated IKK2 relayed phosphate group(s) to IκBα without ATP when ADP is present. We also observed that mutation of K44, an ATP-binding lysine conserved in all protein kinases, to methionine renders IKK2 inactive towards specific phosphorylation of S32 or S36 of IκBα, but not non-specific substrates. These observations highlight an unusual evolution of IKK2, in which autophosphorylation of tyrosine(s) in the activation loop and the invariant ATP-binding K44 residue define its signal-responsive substrate specificity ensuring the fidelity of NF-κB activation.

6.
Nat Commun ; 14(1): 8169, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071370

RESUMEN

SARS-CoV-2 infection-induced aggravation of host innate immune response not only causes tissue damage and multiorgan failure in COVID-19 patients but also induces host genome damage and activates DNA damage response pathways. To test whether the compromised DNA repair capacity of individuals modulates the severity of COVID-19 infection, we analyze DNA repair gene expression in publicly available patient datasets and observe a lower level of the DNA glycosylase NEIL2 in the lungs of severely infected COVID-19 patients. This observation of lower NEIL2 levels is further validated in infected patients, hamsters and ACE2 receptor-expressing human A549 (A549-ACE2) cells. Furthermore, delivery of recombinant NEIL2 in A549-ACE2 cells shows decreased expression of proinflammatory genes and viral E-gene, as well as lowers the yield of viral progeny compared to mock-treated cells. Mechanistically, NEIL2 cooperatively binds to the 5'-UTR of SARS-CoV-2 genomic RNA to block viral protein synthesis. Collectively, these data strongly suggest that the maintenance of basal NEIL2 levels is critical for the protective response of hosts to viral infection and disease.


Asunto(s)
COVID-19 , ADN Glicosilasas , Cricetinae , Animales , Humanos , COVID-19/genética , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Enzima Convertidora de Angiotensina 2/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Genoma , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo
7.
bioRxiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37961108

RESUMEN

We previously reported that the loss of activity of an essential DNA repair enzyme, polynucleotide kinase 3'-phosphatase (PNKP), resulted in accumulation of double strand breaks (DSB) in patient's brain genome in Huntington's disease (HD) and Spinocerebellar ataxia type 3 (SCA3). Here we document that PNKP interacts with the nuclear isoform of phosphofructokinase fructose-2,6-bisphosphatase 3 (PFKFB3), which converts fructose-6-phosphate (F6P) into fructose-2,6-bisphosphate (F2,6BP), a potent allosteric modulator of glycolysis. Depletion of PFKFB3 markedly abrogates PNKP activity, thereby affecting PNKP mediated transcription-coupled non-homologous end joining (TC-NHEJ). Both PFKFB3 and F2,6BP levels are significantly lower in the nuclear extracts of HD and SCA3 patients' brains. Exogenous F2,6BP restored PNKP activity in the brain nuclear extracts of those samples. Moreover, delivery of F2,6BP into HD mouse striata-derived neuronal cells restored PNKP activity, transcribed genome integrity and cellular viability. We thus postulate that F2,6BP serves in vivo as a cofactor for proper functionality of PNKP and thereby of brain health. Our results thus provide a compelling rationale for exploring therapeutic use of F2,6BP and related compounds for treating polyQ diseases.

8.
Methods Mol Biol ; 2666: 69-80, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37166657

RESUMEN

Selective 2' hydroxyl acylation analyzed by primer extension (SHAPE) is used to distinguish between the levels of flexibility of nucleotides regulated by base pairing or protein binding. In this method, a reagent reacts with the 2' hydroxyl group to form an adduct, which is then detected by reverse transcription reaction. The number of RNA molecules with an adduct at a specific nucleotide position indicates the SHAPE reactivity of that nucleotide. Here, we describe the method for probing the structure of an RNA in a protein-free or a protein-bound state by in vitro SHAPE.


Asunto(s)
Pliegue del ARN , ARN , ARN/genética , Conformación de Ácido Nucleico , Nucleótidos/metabolismo , Acilación
9.
Methods Mol Biol ; 2666: 81-93, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37166658

RESUMEN

The functional roles of RNAs are often regulated by their structure. Selective 2' hydroxyl acylation analyzed by primer extension (SHAPE) and dimethyl sulfate (DMS) base reactivity can be employed to investigate the flexibility of nucleotides and correlate it to the constraints imparted by base-pairing and/or protein-binding. In vivo, a multitude of proteins could bind an RNA molecule, regulating its structure and function. Hence, to obtain a more comprehensive view of the RNA structure-function relationship in vivo, it may be required to characterize both the RNA structure and the RNA-protein interaction network. In this chapter, we describe methods for characterizing the in vivo nucleotide flexibility of RNA in cells by SHAPE-MaP (SHAPE by Mutational Profiling) and DMS-MaP. In another chapter, we will discuss the characterization of RNA-protein interaction network by RNP-MaP.


Asunto(s)
ARN , Ésteres del Ácido Sulfúrico , ARN/genética , Conformación de Ácido Nucleico , Emparejamiento Base , Nucleótidos
10.
Methods Mol Biol ; 2666: 95-105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37166659

RESUMEN

RNA-protein interactions regulate a myriad of biological functions through formation of ribonucleoprotein complexes. These complexes may consist of one or more RNA-protein interaction network(s) providing additional layers of regulatory potential to the RNA. Moreover, since the protein-binding also regulates local and global structure of the RNA by structurally remodeling the latter, it is important to correlate RNA nucleotide flexibility with the site of protein-binding. We have discussed methods for chemical probing of structure of the RNA in the protein-free and protein-bound states in the preceding chapters. In this chapter, we describe a ribonucleoprotein mutational profiling (RNP-MaP) method for probing RNA-protein interaction networks.


Asunto(s)
ARN , Ribonucleoproteínas , Ribonucleoproteínas/metabolismo , ARN/química , Mapas de Interacción de Proteínas , Unión Proteica
11.
Elife ; 122023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36779700

RESUMEN

The mammalian NF-κB p52:p52 homodimer together with its cofactor Bcl3 activates transcription of κB sites with a central G/C base pair (bp), while it is inactive toward κB sites with a central A/T bp. To understand the molecular basis for this unique property of p52, we have determined the crystal structures of recombinant human p52 protein in complex with a P-selectin(PSel)-κB DNA (5'-GGGGTGACCCC-3') (central bp is underlined) and variants changing the central bp to A/T or swapping the flanking bp. The structures reveal a nearly two-fold widened minor groove in the central region of the DNA as compared to all other currently available NF-κB-DNA complex structures, which have a central A/T bp. Microsecond molecular dynamics (MD) simulations of free DNAs and p52 bound complexes reveal that free DNAs exhibit distinct preferred conformations, and p52:p52 homodimer induces the least amount of DNA conformational changes when bound to the more transcriptionally active natural G/C-centric PSel-κB, but adopts closed conformation when bound to the mutant A/T and swap DNAs due to their narrowed minor grooves. Our binding assays further demonstrate that the fast kinetics favored by entropy is correlated with higher transcriptional activity. Overall, our studies have revealed a novel conformation for κB DNA in complex with NF-κB and pinpoint the importance of binding kinetics, dictated by DNA conformational and dynamic states, in controlling transcriptional activation for NF-κB.


Asunto(s)
Subunidad p52 de NF-kappa B , FN-kappa B , Animales , Humanos , ADN/metabolismo , Mamíferos/metabolismo , FN-kappa B/metabolismo , Subunidad p52 de NF-kappa B/química , Activación Transcripcional , Multimerización de Proteína
12.
Front Endocrinol (Lausanne) ; 13: 1037465, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36440192

RESUMEN

Aims: Aging is associated with the development of insulin resistance and hypertension which may stem from inflammation induced by accumulation of toxic bacterial DNA crossing the gut barrier. The aim of this study was to identify factors counter-regulating these processes. Taking advantage of the Chromogranin A (CgA) knockout (CgA-KO) mouse as a model for healthy aging, we have identified Vsig4 (V-set and immunoglobulin domain containing 4) as the critical checkpoint gene in offsetting age-associated hypertension and diabetes. Methods and Results: The CgA-KO mice display two opposite aging phenotypes: hypertension but heightened insulin sensitivity at young age, whereas the blood pressure normalizes at older age and insulin sensitivity further improves. In comparison, aging WT mice gradually lost glucose tolerance and insulin sensitivity and developed hypertension. The gut barrier, compromised in aging WT mice, was preserved in CgA KO mice leading to major 35-fold protection against bacterial DNA-induced inflammation. Similarly, RNA sequencing showed increased expression of the Vsig4 gene (which removes bacterial DNA) in the liver of 2-yr-old CgA-KO mice, which may account for the very low accumulation of microbial DNA in the heart. The reversal of hypertension in aging CgA-KO mice likely stems from (i) low accumulation of microbial DNA, (ii) decreased spillover of norepinephrine in the heart and kidneys, and (iii) reduced inflammation. Conclusion: We conclude that healthy aging relies on protection from bacterial DNA and the consequent low inflammation afforded by CgA-KO. Vsig4 also plays a crucial role in "healthy aging" by counteracting age-associated insulin resistance and hypertension.


Asunto(s)
Diabetes Mellitus , Microbioma Gastrointestinal , Hipertensión , Resistencia a la Insulina , Ratones , Animales , Resistencia a la Insulina/genética , ADN Bacteriano , Ratones Noqueados , Hipertensión/genética , ADN , Cromogranina A , Inflamación/genética
13.
Nucleic Acids Res ; 50(14): 8262-8278, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35871302

RESUMEN

We recently reported that serine-arginine-rich (SR) protein-mediated pre-mRNA structural remodeling generates a pre-mRNA 3D structural scaffold that is stably recognized by the early spliceosomal components. However, the intermediate steps between the free pre-mRNA and the assembled early spliceosome are not yet characterized. By probing the early spliceosomal complexes in vitro and RNA-protein interactions in vivo, we show that the SR proteins bind the pre-mRNAs cooperatively generating a substrate that recruits U1 snRNP and U2AF65 in a splice signal-independent manner. Excess U1 snRNP selectively displaces some of the SR protein molecules from the pre-mRNA generating the substrate for splice signal-specific, sequential recognition by U1 snRNP, U2AF65 and U2AF35. Our work thus identifies a novel function of U1 snRNP in mammalian splicing substrate definition, explains the need for excess U1 snRNP compared to other U snRNPs in vivo, demonstrates how excess SR proteins could inhibit splicing, and provides a conceptual basis to examine if this mechanism of splicing substrate definition is employed by other splicing regulatory proteins.


Asunto(s)
Precursores del ARN , Empalme del ARN , Empalmosomas , Animales , Mamíferos/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Empalmosomas/metabolismo , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo
14.
Res Sq ; 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35665009

RESUMEN

Compromised DNA repair capacity of individuals could play a critical role in the severity of SARS-CoV-2 infection-induced COVID-19. We therefore analyzed the expression of DNA repair genes in publicly available transcriptomic datasets of COVID-19 patients and found that the level of NEIL2, an oxidized base specific mammalian DNA glycosylase, is particularly low in the lungs of COVID-19 patients displaying severe symptoms. Downregulation of pulmonary NEIL2 in CoV-2-permissive animals and postmortem COVID-19 patients validated these results. To investigate the potential roles of NEIL2 in CoV-2 pathogenesis, we infected Neil2-null (Neil2-/-) mice with a mouse-adapted CoV-2 strain and found that Neil2-/- mice suffered more severe viral infection concomitant with increased expression of proinflammatory genes, which resulted in an enhanced mortality rate of 80%, up from 20% for the age matched Neil2+/+ cohorts. We also found that infected animals accumulated a significant amount of damage in their lung DNA. Surprisingly, recombinant NEIL2 delivered into permissive A549-ACE2 cells significantly decreased viral replication. Toward better understanding the mechanistic basis of how NEIL2 plays such a protective role against CoV-2 infection, we determined that NEIL2 specifically binds to the 5'-UTR of SARS-CoV-2 genomic RNA and blocks protein synthesis. Together, our data suggest that NEIL2 plays a previously unidentified role in regulating CoV-2-induced pathogenesis, via inhibiting viral replication and preventing exacerbated proinflammatory responses, and also via its well-established role of repairing host genome damage.

15.
J Biol Chem ; 298(5): 101864, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35339487

RESUMEN

Canonical NF-κB signaling through the inhibitor of κB kinase (IKK) complex requires induction of IKK2/IKKß subunit catalytic activity via specific phosphorylation within its activation loop. This process is known to be dependent upon the accessory ubiquitin (Ub)-binding subunit NF-κB essential modulator (NEMO)/IKKγ as well as poly-Ub chains. However, the mechanism through which poly-Ub binding serves to promote IKK catalytic activity is unclear. Here, we show that binding of NEMO/IKKγ to linear poly-Ub promotes a second interaction between NEMO/IKKγ and IKK2/IKKß, distinct from the well-characterized interaction of the NEMO/IKKγ N terminus to the "NEMO-binding domain" at the C terminus of IKK2/IKKß. We mapped the location of this second interaction to a stretch of roughly six amino acids immediately N-terminal to the zinc finger domain in human NEMO/IKKγ. We also showed that amino acid residues within this region of NEMO/IKKγ are necessary for binding to IKK2/IKKß through this secondary interaction in vitro and for full activation of IKK2/IKKß in cultured cells. Furthermore, we identified a docking site for this segment of NEMO/IKKγ on IKK2/IKKß within its scaffold-dimerization domain proximal to the kinase domain-Ub-like domain. Finally, we showed that a peptide derived from this region of NEMO/IKKγ is capable of interfering specifically with canonical NF-κB signaling in transfected cells. These in vitro biochemical and cell culture-based experiments suggest that, as a consequence of its association with linear poly-Ub, NEMO/IKKγ plays a direct role in priming IKK2/IKKß for phosphorylation and that this process can be inhibited to specifically disrupt canonical NF-κB signaling.


Asunto(s)
Quinasa I-kappa B , FN-kappa B , Poliubiquitina , Humanos , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Poliubiquitina/metabolismo , Unión Proteica
16.
J Mol Biol ; 434(5): 167460, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35074482

RESUMEN

Influenza A virus (IAV) is a human-infecting pathogen with a history of causing seasonal epidemics and on several occasions worldwide pandemics. Infection by IAV causes a dramatic decrease in host mRNA translation, whereas viral mRNAs are efficiently translated. The IAV mRNAs have a highly conserved 5'-untranslated region (5'UTR) that is rich in adenosine residues. We show that the human polyadenylate binding protein 1 (PABP1) binds to the 5'UTR of the viral mRNAs. The interaction of PABP1 with the viral 5'UTR makes the translation of viral mRNAs more resistant to canonical cap-dependent translation inhibition than model mRNAs. Additionally, PABP1 bound to the viral 5'UTR can recruit eIF4G in an eIF4E-independent manner. These results indicate that PABP1 bound to the viral 5'UTR may promote eIF4E-independent translation initiation.


Asunto(s)
Virus de la Influenza A , Proteína I de Unión a Poli(A) , ARN Mensajero , ARN Viral , Regiones no Traducidas 5'/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Proteína I de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo
17.
Fortune J Health Sci ; 5(3): 432-454, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37304053

RESUMEN

In India, COVID-19 (Corona Virus Disease-2019) continues to this day, although with subdued intensity, following two major waves of viral infection. Despite ongoing vaccination drives to curb the spread of COVID-19, the relative potential of the administered vaccines to render immune protection to the general population and their advantage over natural infection remain undocumented. In this study, we examined the humoral and cell-mediated immune responses induced by the two vaccines Covishield and Covaxin, in individuals living in and around Kolkata, India. We also compared the immune responses induced separately by vaccination and natural infection. Our results indicate that although Covishield generates a better humoral immune response toward SARS-CoV-2, both vaccines are almost equivalent in terms of cell-mediated immune response to the virus. Both Covishield and Covaxin, however, are more effective toward the wild-type virus than the Delta variant. Additionally, the overall immune response resulting from natural infection in and around Kolkata is not only similar to that generated by vaccination but the cell-mediated immune response to SARS-CoV-2 also lasts for at least ten months in some individuals after the viral infection.

18.
Front Cell Dev Biol ; 9: 764164, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34888310

RESUMEN

The transcription regulators of the NF-κB family have emerged as a critical factor affecting the function of various adult tissues. The NF-κB family transcription factors are homo- and heterodimers made up of five monomers (p50, p52, RelA, cRel and RelB). The family is distinguished by sequence homology in their DNA binding and dimerization domains, which enables them to bind similar DNA response elements and participate in similar biological programs through transcriptional activation and repression of hundreds of genes. Even though the family members are closely related in terms of sequence and function, they all display distinct activities. In this review, we discuss the sequence characteristics, protein and DNA interactions, and pathogenic involvement of one member of family, NF-κB/p52, relative to that of other members. We pinpoint the small sequence variations within the conserved region that are mostly responsible for its distinct functional properties.

19.
EMBO Rep ; 22(8): e52649, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34224210

RESUMEN

IκBs exert principal functions as cytoplasmic inhibitors of NF-kB transcription factors. Additional roles for IκB homologues have been described, including chromatin association and transcriptional regulation. Phosphorylated and SUMOylated IκBα (pS-IκBα) binds to histones H2A and H4 in the stem cell and progenitor cell compartment of skin and intestine, but the mechanisms controlling its recruitment to chromatin are largely unknown. Here, we show that serine 32-36 phosphorylation of IκBα favors its binding to nucleosomes and demonstrate that p-IκBα association with H4 depends on the acetylation of specific H4 lysine residues. The N-terminal tail of H4 is removed during intestinal cell differentiation by proteolytic cleavage by trypsin or chymotrypsin at residues 17-19, which reduces p-IκBα binding. Inhibition of trypsin and chymotrypsin activity in HT29 cells increases p-IκBα chromatin binding but, paradoxically, impaired goblet cell differentiation, comparable to IκBα deletion. Taken together, our results indicate that dynamic binding of IκBα to chromatin is a requirement for intestinal cell differentiation and provide a molecular basis for the understanding of the restricted nuclear distribution of p-IκBα in specific stem cell compartments.


Asunto(s)
Cromatina , Histonas , Acetilación , Cromatina/genética , Histonas/metabolismo , Humanos , Inhibidor NF-kappaB alfa/genética , Nucleosomas/genética
20.
Nucleic Acids Res ; 49(12): 7103-7121, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34161584

RESUMEN

The specific recognition of splice signals at or near exon-intron junctions is not explained by their weak conservation and instead is postulated to require a multitude of features embedded in the pre-mRNA strand. We explored the possibility of 3D structural scaffold of AdML-a model pre-mRNA substrate-guiding early spliceosomal components to the splice signal sequences. We find that mutations in the non-cognate splice signal sequences impede recruitment of early spliceosomal components due to disruption of the global structure of the pre-mRNA. We further find that the pre-mRNA segments potentially interacting with the early spliceosomal component U1 snRNP are distributed across the intron, that there is a spatial proximity of 5' and 3' splice sites within the pre-mRNA scaffold, and that an interplay exists between the structural scaffold and splicing regulatory elements in recruiting early spliceosomal components. These results suggest that early spliceosomal components can recognize a 3D structural scaffold beyond the short splice signal sequences, and that in our model pre-mRNA, this scaffold is formed across the intron involving the major splice signals. This provides a conceptual basis to analyze the contribution of recognizable 3D structural scaffolds to the splicing code across the mammalian transcriptome.


Asunto(s)
Precursores del ARN/química , Empalme del ARN , ARN Mensajero/química , Células HeLa , Humanos , Intrones , Mutación , Conformación de Ácido Nucleico , Dominios Proteicos , Precursores del ARN/metabolismo , Sitios de Empalme de ARN , ARN Mensajero/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Factores de Empalme Serina-Arginina/química , Factores de Empalme Serina-Arginina/metabolismo , Factor de Empalme U2AF/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA