Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Emerg Microbes Infect ; 13(1): 2306959, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38240239

RESUMEN

Cytotoxic T lymphocytes are key for controlling viral infection. Unravelling CD8+ T cell-mediated immunity to distinct influenza virus strains and subtypes across prominent HLA types is relevant for combating seasonal infections and emerging new variants. Using an immunopeptidomics approach, naturally presented influenza A virus-derived ligands restricted to HLA-A*24:02, HLA-A*68:01, HLA-B*07:02, and HLA-B*51:01 molecules were identified. Functional characterization revealed multifunctional memory CD8+ T cell responses for nine out of sixteen peptides. Peptide presentation kinetics was optimal around 12 h post infection and presentation of immunodominant epitopes shortly after infection was not always persistent. Assessment of immunogenic epitopes revealed that they are highly conserved across the major zoonotic reservoirs and may contain a single substitution in the vicinity of the anchor residues. These findings demonstrate how the identified epitopes promote T cell pools, possibly cross-protective in individuals and can be potential targets for vaccination.


Asunto(s)
Epítopos de Linfocito T , Virus de la Influenza A , Humanos , Epítopos de Linfocito T/genética , Virus de la Influenza A/genética , Linfocitos T CD8-positivos , Linfocitos T Citotóxicos , Inmunidad Celular
2.
Clin Cancer Res ; 29(12): 2250-2265, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-36749875

RESUMEN

PURPOSE: Tumor antigens are central to antitumor immunity. Recent evidence suggests that peptides from noncanonical (nonC) aberrantly translated proteins can be presented on HLA-I by tumor cells. Here, we investigated the immunogenicity of nonC tumor HLA-I ligands (nonC-TL) to better understand their contribution to cancer immunosurveillance and their therapeutic applicability. EXPERIMENTAL DESIGN: Peptides presented on HLA-I were identified in 9 patient-derived tumor cell lines from melanoma, gynecologic, and head and neck cancer through proteogenomics. A total of 507 candidate tumor antigens, including nonC-TL, neoantigens, cancer-germline, or melanocyte differentiation antigens, were tested for T-cell recognition of preexisting responses in patients with cancer. Donor peripheral blood lymphocytes (PBL) were in vitro sensitized against 170 selected nonC-TL to isolate antigen-specific T-cell receptors (TCR) and evaluate their therapeutic potential. RESULTS: We found no recognition of the 507 nonC-TL tested by autologous ex vivo expanded tumor-reactive T-cell cultures while the same cultures demonstrated reactivity to mutated, cancer-germline, or melanocyte differentiation antigens. However, in vitro sensitization of donor PBL against 170 selected nonC-TL, led to the identification of TCRs specific to three nonC-TL, two of which mapped to the 5' UTR regions of HOXC13 and ZKSCAN1, and one mapping to a noncoding spliced variant of C5orf22C. T cells targeting these nonC-TL recognized cancer cell lines naturally presenting their corresponding antigens. Expression of the three immunogenic nonC-TL was shared across tumor types and barely or not detected in normal cells. CONCLUSIONS: Our findings predict a limited contribution of nonC-TL to cancer immunosurveillance but demonstrate they may be attractive novel targets for widely applicable immunotherapies. See related commentary by Fox et al., p. 2173.


Asunto(s)
Neoplasias , Proteogenómica , Femenino , Humanos , Ligandos , Iluminación , Antígenos de Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T , Péptidos/inmunología
3.
J Immunother Cancer ; 10(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36460334

RESUMEN

BACKGROUND: Patients with cancers that exhibit extraordinarily high somatic mutation numbers are ideal candidates for immunotherapy and enable identifying tumor-specific peptides through stimulation of tumor-reactive T cells (Tc). METHODS: Colorectal cancers (CRC) HROC113 and HROC285 were selected based on high TMB, microsatellite instability and HLA class I expression. Their HLA ligandome was characterized using mass spectrometry, compared with the HLA ligand atlas and HLA class I-binding affinity was predicted. Cryptic peptides were identified using Peptide-PRISM. Patients' Tc were isolated from either peripheral blood (pTc) or tumor material (tumor-infiltrating Tc, TiTc) and expanded. In addition, B-lymphoblastoid cells (B-LCL) were generated and used as antigen-presenting cells. pTc and TiTc were stimulated twice for 7 days using peptide pool-loaded B-LCL. Subsequently, interferon gamma (IFNγ) release was quantified by ELISpot. Finally, cytotoxicity against autologous tumor cells was assessed in a degranulation assay. RESULTS: 100 tumor-specific candidate peptides-97 cryptic peptides and 3 classically mutated neoantigens-were selected. The neoantigens originated from single nucleotide substitutions in the genes IQGAP1, CTNNB1, and TRIT1. Cryptic and neoantigenic peptides inducing IFNγ secretion of Tc were further investigated. Stimulation of pTc and TiTc with neoantigens and selected cryptic peptides resulted in increased release of cytotoxic granules in the presence of autologous tumor cells, substantiating their improved tumor cell recognition. Tetramer staining showed an enhanced number of pTc and TiTc specific for the IQGAP1 neoantigen. Subpopulation analysis prior to peptide stimulation revealed that pTc mainly consisted of memory Tc, whereas TiTc constituted primarily of effector and effector memory Tc. This allows to infer that TiTc reacting to neoantigens and cryptic peptides must be present within the tumor microenvironment. CONCLUSION: These results prove that the analyzed CRC present both mutated neoantigenic and cryptic peptides on their HLA class I molecules. Moreover, stimulation with these peptides significantly strengthened tumor cell recognition by Tc. Since the overall number of neoantigenic peptides identifiable by HLA ligandome analysis hitherto is small, our data emphasize the relevance of increasing the target scope for cancer vaccines by the cryptic peptide category.


Asunto(s)
Neoplasias Colorrectales , Péptidos , Humanos , Recuento de Linfocitos , Ensayo de Immunospot Ligado a Enzimas , Células Presentadoras de Antígenos , Microambiente Tumoral
4.
EMBO Rep ; 23(12): e55470, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36215666

RESUMEN

CD4+ T lymphocytes play a major role in the establishment and maintenance of immunity. They are activated by antigenic peptides derived from extracellular or newly synthesized (endogenous) proteins presented by the MHC-II molecules. The pathways leading to endogenous MHC-II presentation remain poorly characterized. We demonstrate here that the autophagy receptor, T6BP, influences both autophagy-dependent and -independent endogenous presentation of HIV- and HCMV-derived peptides. By studying the immunopeptidome of MHC-II molecules, we show that T6BP affects both the quantity and quality of peptides presented. T6BP silencing induces the mislocalization of the MHC-II-loading compartments and rapid degradation of the invariant chain (CD74) without altering the expression and internalization kinetics of MHC-II molecules. Defining the interactome of T6BP, we identify calnexin as a T6BP partner. We show that the calnexin cytosolic tail is required for this interaction. Remarkably, calnexin silencing replicates the functional consequences of T6BP silencing: decreased CD4+ T cell activation and exacerbated CD74 degradation. Altogether, we unravel T6BP as a key player of the MHC-II-restricted endogenous presentation pathway, and we propose one potential mechanism of action.


Asunto(s)
Presentación de Antígeno , Antígenos de Histocompatibilidad Clase II , Antígenos de Histocompatibilidad Clase II/genética , Autofagia , Péptidos
5.
Cell Stem Cell ; 29(5): 760-775.e10, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35523139

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) are responsible for the production of blood and immune cells. Throughout life, HSPCs acquire oncogenic aberrations that can cause hematological cancers. Although molecular programs maintaining stem cell integrity have been identified, safety mechanisms eliminating malignant HSPCs from the stem cell pool remain poorly characterized. Here, we show that HSPCs constitutively present antigens via major histocompatibility complex class II. The presentation of immunogenic antigens, as occurring during malignant transformation, triggers bidirectional interactions between HSPCs and antigen-specific CD4+ T cells, causing stem cell proliferation, differentiation, and specific exhaustion of aberrant HSPCs. This immunosurveillance mechanism effectively eliminates transformed HSPCs from the hematopoietic system, thereby preventing leukemia onset. Together, our data reveal a bidirectional interaction between HSPCs and CD4+ T cells, demonstrating that HSPCs are not only passive receivers of immunological signals but also actively engage in adaptive immune responses to safeguard the integrity of the stem cell pool.


Asunto(s)
Presentación de Antígeno , Células Madre Hematopoyéticas , Diferenciación Celular , Linfocitos T
6.
Biotechnol Bioeng ; 118(8): 3069-3075, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33988851

RESUMEN

Recombinant bispecific antibodies (bsAbs) are increasingly included in regimens for cancer therapy. Strict good manufacturing practice (GMP) compliant quality control measures are required to ensure quality and safety of these innovative biologicals. Gel electrophoresis (sodium dodecyl sulfate-polyacrylamide gel electrophoresis [SDS-PAGE]) and size exclusion chromatography (SEC) are the cornerstones of quality control methods. BsAbs are often prone to aggregation or incomplete synthesis due to their artificial nature. In addition, host cell proteins and host cell DNA as well as impurities from the purification process itself constitute potential contaminants. Such impurities may then appear as additional, unexpected bands or peaks on SDS-PAGE gels and SEC, respectively. Here we describe a standardized protocol for rapid analysis of recombinant antibodies by mass spectrometry (MS) after tryptic digestion of bands excised from SDS-PAGE gels. We have used this protocol to characterize unexpected "contaminating bands" that were observed during the clinical development of a novel bsAb with PSMAxCD3 specificity, either during the production of the protein itself or during the development of a surrogate molecule for evaluation in syngeneic mouse models. MS analysis allowed us to precisely determine the origin of these bands, which resulted from artifacts or from incomplete protein synthesis. The combined utilization of SDS-PAGE und MS can therefore substantially support GMP-compliant production of recombinant proteins.


Asunto(s)
Anticuerpos Biespecíficos/química , Antineoplásicos Inmunológicos/química , Electroforesis en Gel de Poliacrilamida , Proteolisis , Animales , Células CHO , Cricetulus , Humanos , Proteínas Recombinantes/química
7.
PLoS Biol ; 19(4): e3001057, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33901176

RESUMEN

Viral diseases pose major threats to humans and other animals, including the billions of chickens that are an important food source as well as a public health concern due to zoonotic pathogens. Unlike humans and other typical mammals, the major histocompatibility complex (MHC) of chickens can confer decisive resistance or susceptibility to many viral diseases. An iconic example is Marek's disease, caused by an oncogenic herpesvirus with over 100 genes. Classical MHC class I and class II molecules present antigenic peptides to T lymphocytes, and it has been hard to understand how such MHC molecules could be involved in susceptibility to Marek's disease, given the potential number of peptides from over 100 genes. We used a new in vitro infection system and immunopeptidomics to determine peptide motifs for the 2 class II molecules expressed by the MHC haplotype B2, which is known to confer resistance to Marek's disease. Surprisingly, we found that the vast majority of viral peptide epitopes presented by chicken class II molecules arise from only 4 viral genes, nearly all having the peptide motif for BL2*02, the dominantly expressed class II molecule in chickens. We expressed BL2*02 linked to several Marek's disease virus (MDV) peptides and determined one X-ray crystal structure, showing how a single small amino acid in the binding site causes a crinkle in the peptide, leading to a core binding peptide of 10 amino acids, compared to the 9 amino acids in all other reported class II molecules. The limited number of potential T cell epitopes from such a complex virus can explain the differential MHC-determined resistance to MDV, but raises questions of mechanism and opportunities for vaccine targets in this important food species, as well as providing a basis for understanding class II molecules in other species including humans.


Asunto(s)
Pollos/inmunología , Herpesvirus Gallináceo 2/inmunología , Antígenos de Histocompatibilidad Clase II , Enfermedad de Marek/inmunología , Animales , Presentación de Antígeno/genética , Presentación de Antígeno/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Bolsa de Fabricio/inmunología , Células Cultivadas , Pollos/genética , Pollos/virología , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Haplotipos , Herpesvirus Gallináceo 2/química , Antígenos de Histocompatibilidad Clase II/química , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Epítopos Inmunodominantes/química , Epítopos Inmunodominantes/genética , Epítopos Inmunodominantes/inmunología , Epítopos Inmunodominantes/metabolismo , Enfermedad de Marek/genética , Enfermedad de Marek/virología , Modelos Moleculares , Péptidos/química , Péptidos/genética , Péptidos/inmunología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/inmunología
8.
Commun Biol ; 4(1): 269, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649389

RESUMEN

The success of cancer immunotherapy relies on the induction of an immunoprotective response targeting tumor antigens (TAs) presented on MHC-I molecules. We demonstrated that the splicing inhibitor isoginkgetin and its water-soluble and non-toxic derivative IP2 act at the production stage of the pioneer translation products (PTPs). We showed that IP2 increases PTP-derived antigen presentation in cancer cells in vitro and impairs tumor growth in vivo. IP2 action is long-lasting and dependent on the CD8+ T cell response against TAs. We observed that the antigen repertoire displayed on MHC-I molecules at the surface of MCA205 fibrosarcoma is modified upon treatment with IP2. In particular, IP2 enhances the presentation of an exon-derived epitope from the tumor suppressor nischarin. The combination of IP2 with a peptide vaccine targeting the nischarin-derived epitope showed a synergistic antitumor effect in vivo. These findings identify the spliceosome as a druggable target for the development of epitope-based immunotherapies.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Antígenos de Neoplasias/metabolismo , Antineoplásicos Fitogénicos/farmacología , Biflavonoides/farmacología , Vacunas contra el Cáncer/farmacología , Fibrosarcoma/tratamiento farmacológico , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Fibrosarcoma/inmunología , Fibrosarcoma/metabolismo , Fibrosarcoma/patología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Receptores de Imidazolina/inmunología , Receptores de Imidazolina/metabolismo , Activación de Linfocitos/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Linfocitos T/metabolismo , Carga Tumoral/efectos de los fármacos , Microambiente Tumoral
9.
Vaccines (Basel) ; 8(2)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531997

RESUMEN

The potency of viral vector-based vaccines depends on their ability to induce strong transgene-specific immune response without triggering anti-vector immunity. Previously, Orf virus (ORFV, Parapoxvirus) strain D1701-V was reported as a novel vector mediating protection against viral infections. The short-lived ORFV-specific immune response and the absence of virus neutralizing antibodies enables repeated immunizations and enhancement of humoral immune responses against the inserted antigens. However, only limited information exists about the D1701-V induced cellular immunity. In this study we employed major histocompatibility complex (MHC) ligandomics and immunogenicity analysis to identify ORFV-specific epitopes. Using liquid chromatography-tandem mass spectrometry we detected 36 ORFV-derived MHC I peptides, originating from various proteins. Stimulated splenocytes from ORFV-immunized mice did not exhibit specific CD8+ T cell responses against the tested peptides. In contrast, immunization with ovalbumin-expressing ORFV recombinant elicited strong SIINFEKL-specific CD8+ T lymphocyte response. In conclusion, our data indicate that cellular immunity to the ORFV vector is negligible, while strong CD8+ T cell response is induced against the inserted transgene. These results further emphasize the ORFV strain D1701-V as an attractive vector for vaccine development. Moreover, the presented experiments describe prerequisites for the selection of T cell epitopes exploitable for generation of ORFV-based vaccines by reverse genetics.

10.
Mol Cell Proteomics ; 19(3): 432-443, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31937595

RESUMEN

For more than two decades naturally presented, human leukocyte antigen (HLA)-restricted peptides (immunopeptidome) have been eluted and sequenced using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Since, identified disease-associated HLA ligands have been characterized and evaluated as potential active substances. Treatments based on HLA-presented peptides have shown promising results in clinical application as personalized T cell-based immunotherapy. Peptide vaccination cocktails are produced as investigational medicinal products under GMP conditions. To support clinical trials based on HLA-presented tumor-associated antigens, in this study the sensitive LC-MS/MS HLA class I antigen identification pipeline was fully validated for our technical equipment according to the current US Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidelines.The immunopeptidomes of JY cells with or without spiked-in, isotope labeled peptides, of peripheral blood mononuclear cells of healthy volunteers as well as a chronic lymphocytic leukemia and a bladder cancer sample were reliably identified using a data-dependent acquisition method. As the LC-MS/MS pipeline is used for identification purposes, the validation parameters include accuracy, precision, specificity, limit of detection and robustness.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Proteómica/métodos , Bioensayo , Línea Celular , Cromatografía Líquida de Alta Presión , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucocitos Mononucleares/metabolismo , Ligandos , Péptidos/metabolismo , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Neoplasias de la Vejiga Urinaria/metabolismo
11.
Front Bioeng Biotechnol ; 8: 571294, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33392160

RESUMEN

Biomaterials play an increasing role in clinical applications and regenerative medicine. A perfectly designed biomaterial should restore the function of damaged tissue without triggering an undesirable immune response, initiate self-regeneration of the surrounding tissue and gradually degrade after implantation. The immune system is well recognized to play a major role in influencing the biocompatibility of implanted medical devices. To obtain a better understanding of the effects of biomaterials on the immune response, we have developed a highly sensitive novel test system capable of examining changes in the immune system by biomaterial. Here, we evaluated for the first time the immunopeptidome, a highly sensitive system that reflects cancer transformation, virus or drug influences and passes these cellular changes directly to T cells, as a test system to examine the effects of contact with materials. Since monocytes are one of the first immune cells reacting to biomaterials, we have tested the influence of different materials on the immunopeptidome of the monocytic THP-1 cell line. The tested materials included stainless steel, aluminum, zinc, high-density polyethylene, polyurethane films containing zinc diethyldithiocarbamate, copper, and zinc sulfate. The incubation with all material types resulted in significantly modulated peptides in the immunopeptidome, which were material-associated. The magnitude of induced changes in the immunopeptidome after the stimulation appeared comparable to that of bacterial lipopolysaccharides (LPS). The source proteins of many detected peptides are associated with cytotoxicity, fibrosis, autoimmunity, inflammation, and cellular stress. Considering all tested materials, it was found that the LPS-induced cytotoxicity-, inflammation- and cellular stress-associated HLA class I peptides were mainly induced by aluminum, whereas HLA class II peptides were mainly induced by stainless steel. These findings provide the first insights into the effects of biomaterials on the immunopeptidome. A more thorough understanding of these effects may enable the design of more biocompatible implant materials using in vitro models in future. Such efforts will provide a deeper understanding of possible immune responses induced by biomaterials such as fibrosis, inflammation, cytotoxicity, and autoimmune reactions.

12.
J Proteome Res ; 18(11): 3876-3884, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31589052

RESUMEN

Personalized multipeptide vaccines are currently being discussed intensively for tumor immunotherapy. In order to identify epitopes-short, immunogenic peptides-suitable for eliciting a tumor-specific immune response, human leukocyte antigen-presented peptides are isolated by immunoaffinity purification from cancer tissue samples and analyzed by liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS). Here, we present MHCquant, a fully automated, portable computational pipeline able to process LC-MS/MS data automatically and generate annotated, false discovery rate-controlled lists of (neo-)epitopes with associated relative quantification information. We could show that MHCquant achieves higher sensitivity than established methods. While obtaining the highest number of unique peptides, the rate of predicted MHC binders remains still comparable to other tools. Reprocessing of the data from a previously published study resulted in the identification of several neoepitopes not detected by previously applied methods. MHCquant integrates tailor-made pipeline components with existing open-source software into a coherent processing workflow. Container-based virtualization permits execution of this workflow without complex software installation, execution on cluster/cloud infrastructures, and full reproducibility of the results. Integration with the data analysis workbench KNIME enables easy mining of large-scale immunopeptidomics data sets. MHCquant is available as open-source software along with accompanying documentation on our website at https://www.openms.de/mhcquant/ .


Asunto(s)
Biología Computacional/métodos , Análisis de Datos , Péptidos/metabolismo , Proteómica/métodos , Cromatografía Liquida/métodos , Antígenos HLA/inmunología , Humanos , Internet , Mutación , Péptidos/genética , Péptidos/inmunología , Reproducibilidad de los Resultados , Programas Informáticos , Espectrometría de Masas en Tándem/métodos
13.
Methods Mol Biol ; 1988: 137-147, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31147938

RESUMEN

MHC class I peptide motifs are used on a regular basis to identify and predict MHC class I ligands and CD8+ T cell epitopes. This approach is above all an invaluable tool for the identification of disease-associated epitopes ranging from pathogen associated epitopes, tumor associated natural and neoepitopes to autoimmune disease associated epitopes. As a matter of fact, the vast majority of T cell epitopes discovered during the past two decades was identified by means of epitope prediction and MHC ligand identification. Here we describe the steps which are necessary to identify MHC epitopes from monoallelic and multiallelic cells and establish MHC class I peptide motifs to compose a reliable scoring matrix for epitope prediction. As an example, the ligands of monoallelic C1R cells and multiallelic peripheral blood mononuclear cell tissue will be identified and a scoring matrix for the prediction of HLA-C*01:02-presented T cell epitopes will be developed.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Biología Molecular/métodos , Péptidos/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Línea Celular , Bases de Datos de Proteínas , Humanos , Ligandos , Curva ROC
14.
Mol Ther Oncolytics ; 12: 147-161, 2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30775418

RESUMEN

Glioblastoma is an aggressive primary brain tumor with bad prognosis. On the other hand, oncolytic measles virus (MeV) therapy is an experimental glioma treatment strategy with clinical safety and first evidence of anti-tumoral efficacy. Therefore, we investigated the combination of MeV with conventional therapies by cytotoxic survival assays in long-term glioma cell lines LN229, LNZ308, and glioma stem-like GS8 cells, as well as the basal viral infectivity in primary glioblastoma cultures T81/16, T1094/17, and T708/16. We employed Chou-Talalay analysis to identify the synergistic treatment sequence chemotherapy, virotherapy, and finally radiotherapy (CT-VT-RT). RNA sequencing and immunopeptidome analyses were used to delineate treatment-induced molecular and immunological profiles. CT-VT-RT displayed synergistic anti-glioma activity and initiated a type 1 interferon response, along with canonical Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling, and downstream interferon-stimulated genes were induced, resulting in apoptotic cascades. Furthermore, antigen presentation along with immunostimulatory chemokines was increased in CT-VT-RT-treated glioma cells, indicating a treatment-induced pro-inflammatory phenotype. We identified novel treatment-induced viral and tumor-associated peptides through HLA ligandome analysis. Our data delineate an actionable treatment-induced molecular and immunological signature of CT-VT-RT, and they could be exploited for the design of novel tailored treatment strategies involving virotherapy and immunotherapy.

15.
J Immunol ; 199(8): 2639-2651, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28904123

RESUMEN

The classical HLA-C and the nonclassical HLA-E and HLA-G molecules play important roles both in the innate and adaptive immune system. Starting already during embryogenesis and continuing throughout our lives, these three Ags exert major functions in immune tolerance, defense against infections, and anticancer immune responses. Despite these important roles, identification and characterization of the peptides presented by these molecules has been lacking behind the more abundant HLA-A and HLA-B gene products. In this study, we elucidated the peptide specificities of these HLA molecules using a comprehensive analysis of naturally presented peptides. To that end, the 15 most frequently expressed HLA-C alleles as well as HLA-E*01:01 and HLA-G*01:01 were transfected into lymphoblastoid C1R cells expressing low endogenous HLA. Identification of naturally presented peptides was performed by immunoprecipitation of HLA and subsequent analysis of HLA-bound peptides by liquid chromatographic tandem mass spectrometry. Peptide motifs of HLA-C unveil anchors in position 2 or 3 with high variances between allotypes, and a less variable anchor at the C-terminal end. The previously reported small ligand repertoire of HLA-E was confirmed within our analysis, and we could show that HLA-G combines a large ligand repertoire with distinct features anchoring peptides at positions 3 and 9, supported by an auxiliary anchor in position 1 and preferred residues in positions 2 and 7. The wealth of HLA ligands resulted in prediction matrices for octa-, nona-, and decamers. Matrices were validated in terms of their binding prediction and compared with the latest NetMHC prediction algorithm NetMHCpan-3.0, which demonstrated their predictive power.


Asunto(s)
Secuencias de Aminoácidos , Presentación de Antígeno , Antígenos/metabolismo , Antígenos HLA-C/metabolismo , Antígenos HLA-G/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Péptidos/metabolismo , Alelos , Secuencia de Aminoácidos , Línea Celular , Simulación por Computador , Antígenos HLA-G/genética , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Espectrometría de Masas , Unión Proteica , Transgenes/genética , Antígenos HLA-E
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...