Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Pept Res Ther ; 29(1): 11, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36532362

RESUMEN

The white spot disease causes significant damage to global aquaculture production. A prominent vaccine, eliciting the immunogenicity of freshwater fishes against Ichthyophthirius multifiliis yet to be developed. Thus, an Immunoinformatic drive was implemented to find out the potential epitopes from the surface immobilization antigens. B-cell derived T-cell epitopes are promiscuous elements for new generation peptide-based vaccine designing. A total of eight common B and T-cell epitopes had filtered out with no overlapping manner. Subsequently, the common epitopes are linked up with EAAAKEAAAKEAAAK linker peptides, we also added L7/L12 ribosomal protein adjuvant at the N- terminal side of peptide sequence for eliciting the immune response in a better way. The secondary and tertiary structural properties of the modeled 3D protein revealed that the protein had all the properties required for a protective immunogen. Afterward, three globally used validation server: PROCKECK, ProSA and ERRAT were used to justify the proper coordinate. NMR, Crystallographic range and error plot calculation for vaccine model also been done respectively. This was followed by molecular docking, MD simulation, NMA analysis, in silico cloning and vaccine dose-based immune response simulation to evaluate the immunogenic potency of the vaccine construct. The in silico immune simulation in response to multi-epitopes show antibody generation and elevated levels of cell-mediated immunity during repeated exposure of the vaccine. The favourable results of the in silico analysis significantly specify that the vaccine construct is really a powerful vaccine candidate and ready to proceed to the next steps of experimental validation and efficacy studies. Supplementary Information: The online version contains supplementary material available at 10.1007/s10989-022-10475-1.

2.
Infect Genet Evol ; 99: 105245, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35150891

RESUMEN

Leprosy is a significant universal health problem that is remarkably still a concern in developing countries due to infection frequency. New therapeutic molecules and next-generation vaccines are urgently needed to accelerate the leprosy-free world. In this direction, the present study was performed using two routes: proteome-mediated therapeutic target identification and mapping as well as multi-epitopic peptide-based novel vaccine development using state of the art of computational biology for the TN strain of M. leprae. The TN strain was selected from 65 Mycobacterium strains, and TN strain proteome mediated 83 therapeutic protein targets were mapped and characterized according to subcellular localization. Also, drug molecules were mapped with respect to protein targets localization. The Druggability potential of proteins was also evaluated. For multi-epitope peptide-based vaccine development, the four common types of B and T cell epitopes were identified (SLFQSHNRK, VVGIGQHAA, MMHRSPRTR, LGVDQTQPV) and combined with the suitable peptide linker. The vaccine component had an acceptable protective antigenic score (0.9751). The molecular docking of vaccine components with TLR4/MD2 complex exhibited a low ACE value (-244.12) which signifies the proper binding between the two molecules. The estimated free Gibbs binding energy ensured accurate protein-protein interactions (-112.46 kcal/mol). The vaccine was evaluated through adaptive immunity stimulation as well as immune interactions. The molecular dynamic simulation was carried out by using CHARMM topology-based parameters to minimize the docked complex. Subsequently, the Normal Mode Analysis in the internal coordinates showed a low eigen-value (1.3982892e-05), which also signifies the stability of molecular docking. Finally, the vaccine components were adopted for reverse transcription and codon optimization in E. coli strain K12 for the pGEX-4T1 vector, which supports in silico cloning of the vaccine components against the pathogen. The study directs the experimental study for therapeutics molecules discovery and vaccine candidate development with higher reliability.


Asunto(s)
Epítopos de Linfocito B , Proteoma , Biología Computacional/métodos , Epítopos de Linfocito T , Escherichia coli , Fluprednisolona/análogos & derivados , Simulación del Acoplamiento Molecular , Mycobacterium leprae , Péptidos , Reproducibilidad de los Resultados , Desarrollo de Vacunas , Vacunas de Subunidad
3.
Mol Biotechnol ; 64(5): 510-525, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34981440

RESUMEN

Presently, the world needs safe and effective vaccines to overcome the COVID-19 pandemic. Our work has focused on formulating two types of mRNA vaccines that differ in capacity to copy themselves inside the cell. These are non-amplifying mRNA (NRM) and self-amplifying mRNA (SAM) vaccines. Both the vaccine candidates encode an engineered viral replicon which can provoke an immune response. Hence we predicted and screened twelve epitopes from the spike glycoprotein of SARS-CoV-2. We used five CTL, four HTL, and three B-cell-activating epitopes to formulate each mRNA vaccine. Molecular docking revealed that these epitopes could combine with HLA molecules that are important for boosting immunogenicity. The B-cell epitopes were adjoined with GPGPG linkers, while CTL and HTL epitopes were linked with KK linkers. The entire protein chain was reverse translated to develop a specific NRM-based vaccine. We incorporate gene encoding replicase in the upstream region of CDS encoding antigen to design the SAM vaccine. Subsequently, signal sequences were added to human mRNA to formulate vaccines. Both vaccine formulations translated to produce the epitopes in host cells, initiate a protective immune cascade, and generate immunogenic memory, which can counter future SARS-CoV-2 viral exposures before the onset of infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Bioingeniería , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Epítopos de Linfocito B/genética , Epítopos de Linfocito T/genética , Humanos , Inmunogenicidad Vacunal , Simulación del Acoplamiento Molecular , Pandemias/prevención & control , ARN Mensajero/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Sintéticas , Vacunas de ARNm
4.
Int J Pept Res Ther ; 28(1): 5, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34867129

RESUMEN

Bunyamwera orthobunyavirus and its serogroup can cause several diseases in humans, cattle, ruminants, and birds. The viral M-polyprotein helps the virus to enter the host body. Therefore, this protein might serve as a potential vaccine target against Bunyamwera orthobunyavirus. The present study applied the immunoinformatics technique to design an epitopic vaccine component that could protect against Bunyamwera infection. Phylogenetic analysis revealed the presence of conserved patterns of M-polyprotein within the viral serogroup. Three epitopes common for both B-cell and T-cell were identified, i.e., YQPTELTRS, YKAHDKEET, and ILGTGTPKF merged with a specific linker peptide to construct an active vaccine component. The low atomic contact energy value of docking complex between human TLR4 (TLR4/MD2 complex) and vaccine construct confirms the elevated protein-protein binding interaction. Molecular dynamic simulation and normal mode analysis illustrate the docking complex's stability, especially by the higher Eigenvalue. In silico cloning of the vaccine construct was applied to amplify the desired vaccine component. Structural allocation of both the vaccine and epitopes also show the efficacy of the developed vaccine. Hence, the computational research design outcomes support that the peptide-based vaccine construction is a crucial drive target to limit the infection of Bunyamwera orthobunyavirus to an extent. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10989-021-10322-9.

5.
Br J Anaesth ; 128(4): 623-635, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34924175

RESUMEN

BACKGROUND: Postoperative hypotension is associated with adverse outcomes, but intraoperative prediction of postanaesthesia care unit (PACU) hypotension is not routine in anaesthesiology workflow. Although machine learning models may support clinician prediction of PACU hypotension, clinician acceptance of prediction models is poorly understood. METHODS: We developed a clinically informed gradient boosting machine learning model using preoperative and intraoperative data from 88 446 surgical patients from 2015 to 2019. Nine anaesthesiologists each made 192 predictions of PACU hypotension using a web-based visualisation tool with and without input from the machine learning model. Questionnaires and interviews were analysed using thematic content analysis for model acceptance by anaesthesiologists. RESULTS: The model predicted PACU hypotension in 17 029 patients (area under the receiver operating characteristic [AUROC] 0.82 [95% confidence interval {CI}: 0.81-0.83] and average precision 0.40 [95% CI: 0.38-0.42]). On a random representative subset of 192 cases, anaesthesiologist performance improved from AUROC 0.67 (95% CI: 0.60-0.73) to AUROC 0.74 (95% CI: 0.68-0.79) with model predictions and information on risk factors. Anaesthesiologists perceived more value and expressed trust in the prediction model for prospective planning, informing PACU handoffs, and drawing attention to unexpected cases of PACU hypotension, but they doubted the model when predictions and associated features were not aligned with clinical judgement. Anaesthesiologists expressed interest in patient-specific thresholds for defining and treating postoperative hypotension. CONCLUSIONS: The ability of anaesthesiologists to predict PACU hypotension was improved by exposure to machine learning model predictions. Clinicians acknowledged value and trust in machine learning technology. Increasing familiarity with clinical use of model predictions is needed for effective integration into perioperative workflows.


Asunto(s)
Hipotensión , Complicaciones Posoperatorias , Humanos , Hipotensión/diagnóstico , Hipotensión/etiología , Aprendizaje Automático , Estudios Prospectivos , Curva ROC
6.
Aging Dis ; 12(8): 2173-2195, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34881093

RESUMEN

Newly emerging significant SARS-CoV-2 variants such as B.1.1.7, B.1.351, and B.1.1.28 are the variant of concern (VOC) for the human race. These variants are getting challenging to contain from spreading worldwide. Because of these variants, the second wave has started in various countries and is threatening human civilization. Thus, we require efficient vaccines that can combat all emerging variants of SARS-CoV-2. Therefore, we took the initiative to develop a peptide-based next-generation vaccine using four variants (Wuhan variant, B.1.1.7, B.1.351, and B.1.1.28) that could potentially combat SARS-CoV-2 variants. We applied a series of computational tools, servers, and software to identify the most significant epitopes present on the mutagenic regions of SARS-CoV-2 variants. The immunoinformatics approaches were used to identify common B cell derived T cell epitopes, influencing the host immune system. Consequently, to develop a novel vaccine candidate, the antigenic epitopes were linked with a flexible and stable peptide linker, and the adjuvant was added at the N-terminal end. 3D vaccine candidate structure was refined, and quality was assessed using web servers. The physicochemical properties and safety parameters of the vaccine construct were assessed through bioinformatics and immunoinformatics tools. The molecular docking analysis between TLR4/MD2 and the proposed vaccine candidate demonstrated a satisfactory interaction. The molecular dynamics studies confirmed the stability of the vaccine candidate. Finally, we optimized the proposed vaccine through codon optimization and in silico cloning to study the expression. Our multi-epitopic next-generation peptide vaccine construct can boost immunity against the Wuhan variant and all significant mutant variants of SARS-CoV-2.

7.
3 Biotech ; 11(2): 47, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33457172

RESUMEN

COVID-19 caused by SARS-CoV-2 was declared a global pandemic by WHO (World Health Organization) in March, 2020. Within 6 months, nearly 750,000 deaths are claimed by COVID-19 across the globe. This called for immediate social, scientific, technological, public and community interventions. Considering the severity of infection and the associated mortalities, global efforts are underway to develop preventive measures against SARS-CoV-2. Among the SARS-CoV-2 target proteins, Spike (S) glycoprotein (a.k.a S Protein) is the most studied target known to trigger strong host immune response. A detailed analysis of S protein-based epitopes enabled us to design a novel B-cell-derived T-cell Multi-epitope-based peptide (MEBP) vaccine candidate. This involved a systematic and comprehensive computational protocol consisting of prediction of dual-purpose epitopes and designing an MEBP vaccine construct. This was followed by 3D structure validation, MEBP complex interaction studies, in silico cloning and vaccine dose-based immune response simulation to evaluate the immunogenic potency of the vaccine construct. The dual-purpose epitope prediction protocol was designed such that the same epitope elicits both humoral and cellular immune response unlike the earlier designs. Further, the epitopes predicted were screened against stringent criteria to ensure selection of a potent candidate with maximum antigen coverage and best immune response. The vaccine dose-based immune response simulation studies revealed a rapid antigen clearance through antibody generation and elevated levels of cell-mediated immunity during repeated exposure of the vaccine. The favourable results of the analysis strongly indicate that the vaccine construct is indeed a potent vaccine candidate and ready to proceed to the next steps of experimental validation and efficacy studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-020-02574-x.

8.
Int J Pept Res Ther ; 27(2): 1149-1166, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33495694

RESUMEN

Helicobacter pylori is a highly potential pathogen to colonize in the human stomach. This bacterial strain is now alarming serious health concern all over the world. Combating through available drugs is a difficult task due to lack of appropriate common targets against genetically diverse strains. Therefore, the developments of effective targets vaccines require alternative strategies to eliminate the H. pylori infection. In this study, we developed a novel vaccine construct using B-cell derived T-cell epitopes from four target antigenic proteins (HpaA, FlaA, FlaB and Omp18), and found the induction of possible immune response using advanced immunoinformatics approaches. In order to boost immune system, we tagged adjuvant (50S ribosomal protein L7/L12) with a suitable linker at the N-terminus side of vaccine sequence. Protein-protein docking between human Toll like receptor 5 (TLR5) and vaccine construct help to predict the way of inductive signaling that leads to immune-response. The calculated negative score (- 151.4, + / - 8.7) of molecular docking complex signify the best binding interface. Molecular dynamics simulation studies confirmed the proper docking between TLR5 and vaccine candidate. Moreover, Normal mode analysis (NMA) calculates the molecular motion of the docking complex. The low eigenvalue (2.935e-05) indicates the stable and flexible molecular motion in the binding interaction side. Finally, in-silico cloning of vaccine candidate was performed using expression vector pET28b (+) with the optimized restriction sites. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s10989-020-10157-w) contains supplementary material, which is available to authorized users.

9.
Infect Genet Evol ; 87: 104633, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33181335

RESUMEN

In spite of the tremendous efforts of the World Health Organization, scientific and medical community to eradicate lymphatic filariasis (LF) within 2020, the disease is still taking a huge toll on mankind throughout the globe. The current therapeutic strategies and solution measures against this alarming condition are suffering from a number of limitations such as inadequate effectiveness of the drugs against the adult-stage parasites, low bioavailability, and emergence of resistance. Considering this situation, development of the new therapeutics are urgently needed to combat human LF, especially targeting the adult filarial nematodes. Brugia malayi, the causative parasite for the human brugian filariasis majorly found in the countries of the South-Asia. In this study, we have designed a vaccine candidate using B-cell and T-cell epitopes derived from the aspartic protease of B. malayi (BmASP-1) and found to display significant humoral and cell mediated immune responses using in-silico approaches. Protein-protein docking between the human Toll-like receptor 4 (TLR4) and the vaccine candidate helped us to predict the way of inductive signaling that leads to immune-response. Molecular dynamics (MD) simulation studies further confirmed the proper docking between the TLR4 and vaccine candidate. Moreover, in-silico cloning of the vaccine element within the expression vector was found useful to optimize the restriction sites as well as to determine the primer location. Taken together, the in-silico vaccine candidate depicted in this study promises could be a useful therapeutic option for treating LF and experimental validation of this study is expected to strengthen the candidature of the said vaccine in the future.


Asunto(s)
Brugia Malayi/efectos de los fármacos , Brugia Malayi/parasitología , Filariasis Linfática/inmunología , Filariasis Linfática/prevención & control , Filariasis Linfática/parasitología , Epítopos de Linfocito B/inmunología , Vacunas/inmunología , Animales , Humanos
10.
Inform Med Unlocked ; 20: 100394, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32835079

RESUMEN

SARS-CoV-2 is spreading globally at a rapid pace. To contain its spread and prevent further fatalities, the development of a vaccine against SARS-CoV-2 is an urgent prerequisite. Thus, in this article, by utilizing the in-silico approach, a vaccine candidate for SARS-CoV-2 has been proposed. Moreover, the effectiveness and safety measures of our proposed epitopic vaccine candidate have been evaluated by in-silico tools and servers (AllerTOP and AllergenFP servers). We observed that the vaccine candidate has no allergenicity and successfully combined with Toll-like receptor (TLR) protein to elicit an inflammatory immune response. Stable, functional mobility of the vaccine-TLR protein binding interface was confirmed by the Normal Mode Analysis. The in-silico cloning model demonstrated the efficacy of the construct vaccine along with the identified epitopes against SARS-CoV-2. Taken together, our proposed in-silico vaccine candidate has potent efficacy against COVID-19 infection, and successive research work might validate its effectiveness in in vitro and in vivo models.

11.
Cell Biochem Biophys ; 78(4): 495-509, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32347457

RESUMEN

Prostate cancer (PCa) is the second most diagnosed cancer in men and ranked fifth in overall cancer diagnosis. During the past decades, it has arisen as a significant life-threatening disease in men at an older age. At the early onset of illness when it is in localized form, radiation and surgical treatments are applied against this disease. In case of adverse situations androgen deprivation therapy, chemotherapy, hormonal therapy, etc. are widely used as a therapeutic element. However, studies found the occurrences of several side effects after applying these therapies. In current work, several immunoinformatic techniques were applied to formulate a multi-epitopic vaccine from the overexpressed antigenic proteins of PCa. A total of 13 epitopes were identified from the five prostatic antigenic proteins (PSA, PSMA, PSCA, STEAP, and PAP), after validation with several in silico tools. These epitopes were fused to form a vaccine element by (GGGGS)3 peptide linker. Afterward, 5, 6-dimethylxanthenone-4-acetic acid (DMXAA) was used as an adjuvant to initiate and induce STING-mediated cytotoxic cascade. In addition, molecular docking was performed between the vaccine element and HLA class I antigen with the low ACE value of -251 kcal/mol which showed a significant binding. Molecular simulation using normal mode analysis (NMA) illustrated the docking complex as a stable one. Therefore, this observation strongly indicated that our multi epitopes bases peptide vaccine molecule will be an effective candidate for the treatment of the PCa.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Simulación por Computador , Epítopos/inmunología , Neoplasias de la Próstata/inmunología , Vacunas de Subunidad/inmunología , Secuencia de Aminoácidos , Vacunas contra el Cáncer/química , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Masculino , Simulación del Acoplamiento Molecular , Neoplasias de la Próstata/prevención & control , Conformación Proteica , Proteómica , Vacunas de Subunidad/química
12.
J Med Virol ; 92(6): 618-631, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32108359

RESUMEN

Recently, a novel coronavirus (SARS-COV-2) emerged which is responsible for the recent outbreak in Wuhan, China. Genetically, it is closely related to SARS-CoV and MERS-CoV. The situation is getting worse and worse, therefore, there is an urgent need for designing a suitable peptide vaccine component against the SARS-COV-2. Here, we characterized spike glycoprotein to obtain immunogenic epitopes. Next, we chose 13 Major Histocompatibility Complex-(MHC) I and 3 MHC-II epitopes, having antigenic properties. These epitopes are usually linked to specific linkers to build vaccine components and molecularly dock on toll-like receptor-5 to get binding affinity. Therefore, to provide a fast immunogenic profile of these epitopes, we performed immunoinformatics analysis so that the rapid development of the vaccine might bring this disastrous situation to the end earlier.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Epítopos de Linfocito B/química , Epítopos de Linfocito T/química , Pandemias/prevención & control , Neumonía Viral/prevención & control , Glicoproteína de la Espiga del Coronavirus/química , Receptor Toll-Like 5/química , Vacunas Virales/química , Secuencia de Aminoácidos , Betacoronavirus/genética , Betacoronavirus/patogenicidad , Sitios de Unión , COVID-19 , Vacunas contra la COVID-19 , Biología Computacional/métodos , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/química , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Simulación del Acoplamiento Molecular , Neumonía Viral/inmunología , Neumonía Viral/virología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/inmunología , Vacunas de Subunidad , Vacunas Virales/inmunología
13.
Microb Drug Resist ; 24(3): 299-306, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28829687

RESUMEN

This study was undertaken to detect the prevalence of CTX-M-producing Klebsiella spp. in healthy broiler, indigenous, and kuroiler birds reared in West Bengal (India) during November 2014-February 2015. In addition to CTX-M gene, the study was also conducted to reveal the occurrence of other ß-lactamase and class I integron genes in Klebsiella spp. isolates along with their clonal relationship. A total of 321 cloacal swabs from healthy broiler, indigenous, and kuroiler birds were collected from different places of West Bengal, India. Klebsiella spp. isolation rate varies among different types of poultry birds (43.8-72.3%). In total, 33 (10.7%) Klebsiella spp. isolates were detected phenotypically as CTX-M producers and all the isolates possessed blaCTX-M in polymerase chain reaction. Whereas 17 (51.5%) and 16 (48.5%) Klebsiella spp. isolates possessed blaSHV, and blaTEM with blaCTX-M, respectively. None of the CTX-M-producing Klebsiella spp. isolates in this study possessed class I integron gene. Randomly amplified polymorphic DNA-based phylogenetic tree revealed the presence of clonal relationship among the CTX-M-producing Klebsiella spp. isolates, recovered from broilers and indigenous birds. This study identified broilers and indigenous game birds as a potential reservoir of CTX-M-producing Klebsiella spp., which could be transmitted to the human food chain directly or indirectly.


Asunto(s)
Portador Sano/microbiología , Reservorios de Enfermedades/microbiología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , beta-Lactamasas/genética , Animales , Antibacterianos/farmacología , Pollos , Células Clonales , Expresión Génica , India , Isoenzimas/genética , Isoenzimas/metabolismo , Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Filogenia , Aves de Corral , beta-Lactamasas/metabolismo
14.
Clin Transl Sci ; 7(2): 156-63, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24456508

RESUMEN

In 2007, the Michigan Institute for Clinical and Health Research (MICHR) at the University of Michigan received a Clinical and Translational Science Award (CTSA). Within MICHR, the Community Engagement (CE) program supports partnership efforts between researchers, practitioners, and community-based organizations in specific focal communities throughout Michigan. A key component of the CE program is the Community Engagement Coordinating Council, a group that provides input and guidance on program priorities, strategic planning, and reviews pilot funding proposals for community-academic partnerships. This paper will describe a unique MICHR pilot funding mechanism for Community-University Research Partnerships (CURES) with an emphasis on the ways that community partners are involved in the review process, as well as the benefits, challenges, and insights gained over 5 years of pilot review. There is a growing need for community involvement and expertise in review of funding proposals for community-engaged research at both institutional and federal levels. The CURES pilot review process is one example of an institutional effort to engage community partners in university funding decisions and has demonstrated clear benefit toward accomplishing the aims of the CTSA.


Asunto(s)
Investigación Biomédica/economía , Relaciones Comunidad-Institución , Conducta Cooperativa , Revisión de la Investigación por Pares , Apoyo a la Investigación como Asunto/economía , Universidades , Compensación y Reparación , Educación en Salud , Conocimiento , Proyectos Piloto , Competencia Profesional , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...