Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38536433

RESUMEN

Colonisation of sessile bacterial species on biotic and abiotic surfaces is responsible for the development of various infections in humans. At present, biofilm-associated chronic infections have been a prime concern among the healthcare practitioners since they are impermeable to drugs, resulting in the development of antibiotic resistance or multi-drug resistance. For a few decades, a lot of research activity has been performed in the development of alternative therapeutics to combat biofilm-associated chronic infections. The presence of extracellular polymeric substance (EPS) prevents the permeation of most of the drugs rendering drug failures. The use of small molecules has been necessary to penetrate easily through the EPS and act on the targeted cells. In present days, the use of antimicrobial peptides (AMPs) has gained immense importance as alternative therapeutics since they exhibit a novel class of antibiotics exhibiting a wide spectrum of activity and possess a low rate of development of resistance. In the last few decades, a large number of AMPs have been identified from varied groups of organisms as effector molecules for innate immune system acting as an important line of defence. In this review, we will discuss the use of AMPs as effective agents to combat various biofilm-associated chronic infections.

2.
Front Chem ; 11: 1118454, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36959877

RESUMEN

Medicinal plants are long known for their therapeutic applications. Tinospora cordifolia (commonly called gulancha or heart-leaved moonseed plant), a herbaceous creeper widely has been found to have antimicrobial, anti-inflammatory, anti-diabetic, and anti-cancer properties. However, there remains a dearth of reports regarding its antibiofilm activities. In the present study, the anti-biofilm activities of phytoextractof T. cordifolia and the silver nanoparticles made from this phytoextract were tested against the biofilm of S.taphylococcus aureus, one of the major nosocomial infection-producing bacteria taking tetracycline antibiotic as control. Both phytoextract from the leaves of T. cordifolia, and the biogenic AgNPs from the leaf extract of T. cordifolia, were found successful in reducing the biofilm of Staphylococcus aureus. The biogenic AgNPs formed were characterized by UV- Vis spectroscopy, Field emission Scanning Electron Microscopy (FE- SEM), and Dynamic light scattering (DLS) technique. FE- SEM images showed that the AgNPs were of size ranging between 30 and 50 nm and were stable in nature, as depicted by the zeta potential analyzer. MIC values for phytoextract and AgNPs were found to be 180 mg/mL and 150 µg/mL against S. aureusrespectively. The antibiofilm properties of the AgNPs and phytoextract were analyzed using the CV assay and MTT assay for determining the reduction of biofilms. Reduction in viability count and revival of the S. aureus ATCC 23235 biofilm cells were analyzed followed by the enfeeblement of the EPS matrix to quantify the reduction in the contents of carbohydrates, proteins and eDNA. The SEM analyses clearly indicated that although the phytoextracts could destroy the biofilm network of S. aureuscells yet the biogenicallysynthesizedAgNPs were more effective in biofilm disruption. Fourier Transformed Infrared Radiations (FT- IR) analyses revealed that the AgNPs could bring about more exopolysaccharide (EPS) destruction in comparison to the phytoextract. The antibiofilm activities of AgNPs made from the phytoextract were found to be much more effective than the non-conjugated phytoextract, indicating the future prospect of using such particles for combatting biofilm-mediated infections caused by S aureus.

3.
Appl Biochem Biotechnol ; 195(9): 5312-5328, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34989967

RESUMEN

Leonurus sibiricus (Red verticilla, honeyweed) is a type of herbaceous plant predominantly found in Asian subcontinents as weed in crop fields and is widely used for treating diabetes, bronchitis, and menstrual irregularities. However, there is a dearth of study in the application of the plant phytocompounds for treating biofilm-associated chronic infections. The bioactive compounds mainly comprise of tri-terpenes, di-terpenes, phenolic acid, and flavonoids which may have potential role as antimicrobial and antibiofilm agents. Acute and chronic infection causing microbes usually form biofilm and develop virulence factors and antibiotic resistance through quorum sensing (QS). In this study, the bioactive compounds leosibirin, sibiricinone A, leosibirone A, leonotin, quercetin, lavandulifolioside, and myricetin were identified using GC-MS analysis. These were used for analyzing the antibiofilm and anti-quorum sensing activities (rhamnolipid, AHL assay, swarming motility assay) against the biofilm formed by Pseudomonas aeruginosa, the most significant nosocomial disease-causing bacteria. The compounds were able to bring about maximum inhibition in biofilm formation and QS. Although the antibiofilm activity of the phytoextract was found to be higher than that of individual phytocompounds at a concentration of 250 µg/mL, quercetin and myricetin showed highest antibiofilm activity against Pseudomonas aeruginosa, respectively, at MIC values of 135 µg/mL and 150 µg/mL against P aeruginosa. FT-IR study also revealed that the active ingredients were able to bring about the destruction of exopolysaccharides (EPS). These observations were further validated by molecular docking interactions that showed the active ingredients inhibit the functioning of QS sensing proteins by binding with them. It was observed that myricetin showed better interactions with the QS proteins of P. aeruginosa. Myricetin and quercetin show considerable inhibition of biofilm in comparison to the phytocompounds. Thus, the present study suggests that the active compounds from L. sibiricus can be used as an alternate strategy in inhibiting the biofilm formed by pathogenic organisms.


Asunto(s)
Leonurus , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Leonurus/metabolismo , Simulación del Acoplamiento Molecular , Quercetina , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas , Factores de Virulencia/metabolismo
4.
Front Microbiol ; 13: 964848, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36016778

RESUMEN

The abrupt emergence of antimicrobial resistant (AMR) bacterial strains has been recognized as one of the biggest public health threats affecting the human race and food processing industries. One of the causes for the emergence of AMR is the ability of the microorganisms to form biofilm as a defense strategy that restricts the penetration of antimicrobial agents into bacterial cells. About 80% of human diseases are caused by biofilm-associated sessile microbes. Bacterial biofilm formation involves a cascade of genes that are regulated via the mechanism of quorum sensing (QS) and signaling pathways that control the production of the extracellular polymeric matrix (EPS), responsible for the three-dimensional architecture of the biofilm. Another defense strategy utilized commonly by various bacteria includes clustered regularly interspaced short palindromic repeats interference (CRISPRi) system that prevents the bacterial cell from viral invasion. Since multigenic signaling pathways and controlling systems are involved in each and every step of biofilm formation, the CRISPRi system can be adopted as an effective strategy to target the genomic system involved in biofilm formation. Overall, this technology enables site-specific integration of genes into the host enabling the development of paratransgenic control strategies to interfere with pathogenic bacterial strains. CRISPR-RNA-guided Cas9 endonuclease, being a promising genome editing tool, can be effectively programmed to re-sensitize the bacteria by targeting AMR-encoding plasmid genes involved in biofilm formation and virulence to revert bacterial resistance to antibiotics. CRISPRi-facilitated silencing of genes encoding regulatory proteins associated with biofilm production is considered by researchers as a dependable approach for editing gene networks in various biofilm-forming bacteria either by inactivating biofilm-forming genes or by integrating genes corresponding to antibiotic resistance or fluorescent markers into the host genome for better analysis of its functions both in vitro and in vivo or by editing genes to stop the secretion of toxins as harmful metabolites in food industries, thereby upgrading the human health status.

5.
Front Nutr ; 9: 879929, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464014

RESUMEN

In recent times, the seafood industry is found to produce large volumes of waste products comprising shrimp shells, fish bones, fins, skins, intestines, and carcasses, along with the voluminous quantity of wastewater effluents. These seafood industry effluents contain large quantities of lipids, amino acids, proteins, polyunsaturated fatty acids, minerals, and carotenoids mixed with the garbage. This debris not only causes a huge wastage of various nutrients but also roots in severe environmental contamination. Hence, the problem of such seafood industry run-offs needs to be immediately managed with a commercial outlook. Microbiological treatment may lead to the valorization of seafood wastes, the trove of several useful compounds into value-added materials like enzymes, such as lipase, protease, chitinase, hyaluronidase, phosphatase, etc., and organic compounds like bioactive peptides, collagen, gelatin, chitosan, and mineral-based nutraceuticals. Such bioconversion in combination with a bio-refinery strategy possesses the potential for environment-friendly and inexpensive management of discards generated from seafood, which can sustainably maintain the production of seafood. The compounds that are being produced may act as nutritional sources or as nutraceuticals, foods with medicinal value. Determining utilization of seafood discard not only reduces the obnoxious deposition of waste but adds economy in the production of food with nutritional and medicinal importance, and, thereby meets up the long-lasting global demand of making nutrients and nutraceuticals available at a nominal cost.

6.
Front Nutr ; 9: 808630, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35479755

RESUMEN

Microbial communities within fermented food (beers, wines, distillates, meats, fishes, cheeses, breads) products remain within biofilm and are embedded in a complex extracellular polymeric matrix that provides favorable growth conditions to the indwelling species. Biofilm acts as the best ecological niche for the residing microbes by providing food ingredients that interact with the fermenting microorganisms' metabolites to boost their growth. This leads to the alterations in the biochemical and nutritional quality of the fermented food ingredients compared to the initial ingredients in terms of antioxidants, peptides, organoleptic and probiotic properties, and antimicrobial activity. Microbes within the biofilm have altered genetic expression that may lead to novel biochemical pathways influencing their chemical and organoleptic properties related to consumer acceptability. Although microbial biofilms have always been linked to pathogenicity owing to its enhanced antimicrobial resistance, biofilm could be favorable for the production of amino acids like l-proline and L-threonine by engineered bacteria. The unique characteristics of many traditional fermented foods are attributed by the biofilm formed by lactic acid bacteria and yeast and often, multispecies biofilm can be successfully used for repeated-batch fermentation. The present review will shed light on current research related to the role of biofilm in the fermentation process with special reference to the recent applications of NGS/WGS/omics for the improved biofilm forming ability of the genetically engineered and biotechnologically modified microorganisms to bring about the amelioration of the quality of fermented food.

7.
J Basic Microbiol ; 62(11): 1291-1306, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35373364

RESUMEN

Biofilm-associated infections have increased excessively over the recent years due to the increased population having impaired immune systems or as a result of certain medical conditions like transplantation, cancer, and any other chronic ailments. The abrupt enhancement of antibiotic resistance and enhanced utilization of biomedical devices offer new opportunities for microbial colonization leading to the development of microbial biofilms. Total eradication of recalcitrant microbial biofilms demands the adoption of a holistic approach and since the fungal metabolites enriched with bioactive compounds show efficacy in inhibiting the multiple factors behind biofilm formation, the anti-biofilm activities of fungal metabolites need to be appraised. Being effective in preventing various steps of biofilm formation, including inhibition of surface adhesion and cell-to-cell communication through quorum quenching, blocking of quorum sensing receptors, and enzymes involved in microbial cell wall biosynthesis, targeting the virulence factors and finally killing of biofilm bound individual cells; myco-metabolites are found effective as a potent holistic anti-biofilm agent. The wide spectrum of bioactive substances of fungi and their anti-biofilm activities against different pathogens and their multitarget characteristics are very promising in the field of treating biofilm infections.


Asunto(s)
Antibacterianos , Biopelículas , Antibacterianos/farmacología , Percepción de Quorum , Factores de Virulencia/metabolismo
8.
Antibiotics (Basel) ; 11(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35052938

RESUMEN

Increased resistance of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp. (ESKAPE) pathogens against various drugs has enhanced the urge for the development of alternate therapeutics. Quorum sensing (QS) is a density dependent cell-to-cell communication mechanism responsible for controlling pathogenicity with the regulation of gene expression. Thus, QS is considered a potential target for the development of newer anti-biofilm agents that do not depend on the utilization of antibiotics. Compounds with anti-QS effects are known as QS inhibitors (QSIs), and they can inhibit the QS mechanism that forms the major form in the development of bacterial pathogenesis. A diverse array of natural compounds provides a plethora of anti-QS effects. Over recent years, these natural compounds have gained importance as new strategies for combating the ESKAPE pathogens and inhibiting the genes involved in QS. Different pharmacognostical and pharmacological studies have been carried out so far for identification of novel drugs or for the discovery of their unique structures that may help in developing more effective anti-biofilm therapies. The main objective of this review is to discuss the various natural compounds, so far identified and their employed mechanisms in hindering the genes responsible for QS leading to bacterial pathogenesis.

9.
Polymers (Basel) ; 13(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921239

RESUMEN

Bacteria are considered as the major cell factories, which can effectively convert nitrogen and carbon sources to a wide variety of extracellular and intracellular biopolymers like polyamides, polysaccharides, polyphosphates, polyesters, proteinaceous compounds, and extracellular DNA. Bacterial biopolymers find applications in pathogenicity, and their diverse materialistic and chemical properties make them suitable to be used in medicinal industries. When these biopolymer compounds are obtained from pathogenic bacteria, they serve as important virulence factors, but when they are produced by non-pathogenic bacteria, they act as food components or biomaterials. There have been interdisciplinary studies going on to focus on the molecular mechanism of synthesis of bacterial biopolymers and identification of new targets for antimicrobial drugs, utilizing synthetic biology for designing and production of innovative biomaterials. This review sheds light on the mechanism of synthesis of bacterial biopolymers and its necessary modifications to be used as cell based micro-factories for the production of tailor-made biomaterials for high-end applications and their role in pathogenesis.

10.
Dev Psychopathol ; 33(3): 980-991, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32571444

RESUMEN

Less is known about the relationship between conduct disorder (CD), callous-unemotional (CU) traits, and positive and negative parenting in youth compared to early childhood. We combined traditional univariate analyses with a novel machine learning classifier (Angle-based Generalized Matrix Learning Vector Quantization) to classify youth (N = 756; 9-18 years) into typically developing (TD) or CD groups with or without elevated CU traits (CD/HCU, CD/LCU, respectively) using youth- and parent-reports of parenting behavior. At the group level, both CD/HCU and CD/LCU were associated with high negative and low positive parenting relative to TD. However, only positive parenting differed between the CD/HCU and CD/LCU groups. In classification analyses, performance was best when distinguishing CD/HCU from TD groups and poorest when distinguishing CD/HCU from CD/LCU groups. Positive and negative parenting were both relevant when distinguishing CD/HCU from TD, negative parenting was most relevant when distinguishing between CD/LCU and TD, and positive parenting was most relevant when distinguishing CD/HCU from CD/LCU groups. These findings suggest that while positive parenting distinguishes between CD/HCU and CD/LCU, negative parenting is associated with both CD subtypes. These results highlight the importance of considering multiple parenting behaviors in CD with varying levels of CU traits in late childhood/adolescence.


Asunto(s)
Trastorno de la Conducta , Adolescente , Niño , Preescolar , Emociones , Empatía , Humanos , Responsabilidad Parental
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 3647-50, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26737083

RESUMEN

A student chapter can be considered to be a miniature enterprise; however without the latter's major financial risks. Involvement in the student chapter of a professional society like IEEE at undergraduate level plays a pivotal role in the overall professional development of the student by keeping the students informed about the various career possibilities. A student chapter shapes the hitherto naive students into industry ready professionals and to suitable candidates for some of the best grad schools worldwide. This assertion has been discussed in-depth taking the example of IEEE EMBS Student Branch chapter of VIT University. It has been described how the entire process, - starting from inception of an idea to its materialization in to an activity, has shaped the volunteers and participants into better professionals.


Asunto(s)
Ingeniería/organización & administración , Profesionalismo , Sociedades Científicas , Estudiantes , Universidades/organización & administración , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...