Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 420, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653999

RESUMEN

Wheat (Triticum aestivum) is one of the most important food crops with an urgent need for increase in its production to feed the growing world. Triticum timopheevii (2n = 4x = 28) is an allotetraploid wheat wild relative species containing the At and G genomes that has been exploited in many pre-breeding programmes for wheat improvement. In this study, we report the generation of a chromosome-scale reference genome assembly of T. timopheevii accession PI 94760 based on PacBio HiFi reads and chromosome conformation capture (Hi-C). The assembly comprised a total size of 9.35 Gb, featuring a contig N50 of 42.4 Mb and included the mitochondrial and plastid genome sequences. Genome annotation predicted 166,325 gene models including 70,365 genes with high confidence. DNA methylation analysis showed that the G genome had on average more methylated bases than the At genome. In summary, the T. timopheevii genome assembly provides a valuable resource for genome-informed discovery of agronomically important genes for food security.


Asunto(s)
Cromosomas de las Plantas , Genoma de Planta , Triticum , Triticum/genética , Cromosomas de las Plantas/genética , Metilación de ADN
2.
Toxicol In Vitro ; 98: 105826, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38615723

RESUMEN

Human induced pluripotent stem cells (iPSC) have the potential to produce desired target cell types in vitro and allow for the high-throughput screening of drugs/chemicals at population level thereby minimising the cost of drug discovery and drug withdrawals after clinical trials. There is a substantial need for the characterisation of the iPSC derived models to better understand and utilise them for toxicological relevant applications. In our study, iPSC (SBAD2 or SBAD3 lines obtained from StemBANCC project) were differentiated towards toxicologically relevant cell types: alveolar macrophages, brain capillary endothelial cells, brain cells, endothelial cells, hepatocytes, lung airway epithelium, monocytes, podocytes and renal proximal tubular cells. A targeted transcriptomic approach was employed to understand the effects of differentiation protocols on these cell types. Pearson correlation and principal component analysis (PCA) separated most of the intended target cell types and undifferentiated iPSC models as distinct groups with a high correlation among replicates from the same model. Based on PCA, the intended target cell types could also be separated into the three germ layer groups (ectoderm, endoderm and mesoderm). Differential expression analysis (DESeq2) presented the upregulated genes in each intended target cell types that allowed the evaluation of the differentiation to certain degree and the selection of key differentiation markers. In conclusion, these data confirm the versatile use of iPSC differentiated cell types as standardizable and relevant model systems for in vitro toxicology.

3.
Toxicol In Vitro ; 81: 105333, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35182771

RESUMEN

Most OECD guidelines for chemical risk assessment include tests performed on animals, raising financial, ethical and scientific concerns. Thus, the development of human-based models for toxicity testing is highly encouraged. Here, we propose an in vitro multi-organ strategy to assess the toxicity of chemicals. Human induced pluripotent stem cells (hiPSCs)-derived models of the brain, blood-brain barrier, kidney, liver and vasculature were generated and exposed to paraquat (PQ), a widely employed herbicide with known toxic effects in kidneys and brain. The models showed differential cytotoxic sensitivity to PQ after acute exposure. TempO-Seq analysis with a set of 3565 probes revealed the deregulation of oxidative stress, unfolded protein response and estrogen receptor-mediated signaling pathways, in line with the existing knowledge on PQ mechanisms of action. The main advantages of this strategy are to assess chemical toxicity on multiple tissues/organs in parallel, exclusively in human cells, eliminating the interspecies bias, allowing a better evaluation of the differential sensitivity of the models representing the diverse organs, and increasing the chance to identify toxic compounds. Furthermore, although we focused on the mechanisms of action of PQ shared by the different models, this strategy would also allow for organ-specific toxicity testing, by including more cell type-specific probes for TempO-Seq analyses. In conclusion, we believe this strategy will participate in the further improvement of chemical risk assessment for human health.


Asunto(s)
Herbicidas , Células Madre Pluripotentes Inducidas , Animales , Herbicidas/metabolismo , Herbicidas/toxicidad , Humanos , Hígado/metabolismo , Estrés Oxidativo , Paraquat/toxicidad
4.
Nat Biotechnol ; 40(3): 422-431, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34725503

RESUMEN

Aegilops tauschii, the diploid wild progenitor of the D subgenome of bread wheat, is a reservoir of genetic diversity for improving bread wheat performance and environmental resilience. Here we sequenced 242 Ae. tauschii accessions and compared them to the wheat D subgenome to characterize genomic diversity. We found that a rare lineage of Ae. tauschii geographically restricted to present-day Georgia contributed to the wheat D subgenome in the independent hybridizations that gave rise to modern bread wheat. Through k-mer-based association mapping, we identified discrete genomic regions with candidate genes for disease and pest resistance and demonstrated their functional transfer into wheat by transgenesis and wide crossing, including the generation of a library of hexaploids incorporating diverse Ae. tauschii genomes. Exploiting the genomic diversity of the Ae. tauschii ancestral diploid genome permits rapid trait discovery and functional genetic validation in a hexaploid background amenable to breeding.


Asunto(s)
Aegilops , Aegilops/genética , Pan , Genómica , Metagenómica , Fitomejoramiento , Triticum/genética
5.
Mol Plant ; 14(7): 1053-1070, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33991673

RESUMEN

Disease-resistance (R) gene cloning in wheat (Triticum aestivum) has been accelerated by the recent surge of genomic resources, facilitated by advances in sequencing technologies and bioinformatics. However, with the challenges of population growth and climate change, it is vital not only to clone and functionally characterize a few handfuls of R genes, but also to do so at a scale that would facilitate the breeding and deployment of crops that can recognize the wide range of pathogen effectors that threaten agroecosystems. Pathogen populations are continually changing, and breeders must have tools and resources available to rapidly respond to those changes if we are to safeguard our daily bread. To meet this challenge, we propose the creation of a wheat R-gene atlas by an international community of researchers and breeders. The atlas would consist of an online directory from which sources of resistance could be identified and deployed to achieve more durable resistance to the major wheat pathogens, such as wheat rusts, blotch diseases, powdery mildew, and wheat blast. We present a costed proposal detailing how the interacting molecular components governing disease resistance could be captured from both the host and the pathogen through biparental mapping, mutational genomics, and whole-genome association genetics. We explore options for the configuration and genotyping of diversity panels of hexaploid and tetraploid wheat, as well as their wild relatives and major pathogens, and discuss how the atlas could inform a dynamic, durable approach to R-gene deployment. Set against the current magnitude of wheat yield losses worldwide, recently estimated at 21%, this endeavor presents one route for bringing R genes from the lab to the field at a considerable speed and quantity.


Asunto(s)
Atlas como Asunto , Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Triticum/genética , Productos Agrícolas/genética , Fitomejoramiento
6.
Clin Microbiol Rev ; 34(3)2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33789928

RESUMEN

Several viruses target the human respiratory tract, causing different clinical manifestations spanning from mild upper airway involvement to life-threatening acute respiratory distress syndrome (ARDS). As dramatically evident in the ongoing SARS-CoV-2 pandemic, the clinical picture is not always easily predictable due to the combined effect of direct viral and indirect patient-specific immune-mediated damage. In this review, we discuss the main RNA (orthomyxoviruses, paramyxoviruses, and coronaviruses) and DNA (adenoviruses, herpesviruses, and bocaviruses) viruses with respiratory tropism and their mechanisms of direct and indirect cell damage. We analyze the thin line existing between a protective immune response, capable of limiting viral replication, and an unbalanced, dysregulated immune activation often leading to the most severe complication. Our comprehension of the molecular mechanisms involved is increasing and this should pave the way for the development and clinical use of new tailored immune-based antiviral strategies.


Asunto(s)
Virus ADN , Lesión Pulmonar , Virus ARN , Infecciones del Sistema Respiratorio , Virosis , Adulto , Anciano , Antivirales/uso terapéutico , COVID-19 , Niño , Preescolar , Femenino , Humanos , Factores Inmunológicos/uso terapéutico , Lactante , Recién Nacido , Interferones/uso terapéutico , Pulmón/inmunología , Pulmón/virología , Lesión Pulmonar/diagnóstico , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/inmunología , Lesión Pulmonar/virología , Masculino , Persona de Mediana Edad , Pandemias , SARS-CoV-2
7.
Immunity ; 54(6): 1186-1199.e7, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33915108

RESUMEN

A cardinal feature of COVID-19 is lung inflammation and respiratory failure. In a prospective multi-country cohort of COVID-19 patients, we found that increased Notch4 expression on circulating regulatory T (Treg) cells was associated with disease severity, predicted mortality, and declined upon recovery. Deletion of Notch4 in Treg cells or therapy with anti-Notch4 antibodies in conventional and humanized mice normalized the dysregulated innate immunity and rescued disease morbidity and mortality induced by a synthetic analog of viral RNA or by influenza H1N1 virus. Mechanistically, Notch4 suppressed the induction by interleukin-18 of amphiregulin, a cytokine necessary for tissue repair. Protection by Notch4 inhibition was recapitulated by therapy with Amphiregulin and, reciprocally, abrogated by its antagonism. Amphiregulin declined in COVID-19 subjects as a function of disease severity and Notch4 expression. Thus, Notch4 expression on Treg cells dynamically restrains amphiregulin-dependent tissue repair to promote severe lung inflammation, with therapeutic implications for COVID-19 and related infections.


Asunto(s)
Interacciones Huésped-Patógeno , Inmunidad Celular , Neumonía Viral/etiología , Neumonía Viral/metabolismo , Receptor Notch4/metabolismo , Transducción de Señal , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Anfirregulina/farmacología , Animales , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunohistoquímica , Inmunomodulación/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Virus de la Influenza A/fisiología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Ratones , Ratones Transgénicos , Neumonía Viral/patología , Receptor Notch4/antagonistas & inhibidores , Receptor Notch4/genética , Índice de Severidad de la Enfermedad
8.
Cell Death Dis ; 12(1): 84, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446637

RESUMEN

To date, there is no representative in vitro model for liver sinusoidal endothelial cells (LSECs), as primary LSECs dedifferentiate very fast in culture and no combination of cytokines or growth factors can induce an LSEC fate in (pluripotent stem cell (PSC)-derived) endothelial cells (ECs). Furthermore, the transcriptional programmes driving an LSEC fate have not yet been described. Here, we first present a computational workflow (CenTFinder) that can identify transcription factors (TFs) that are crucial for modulating pathways involved in cell lineage specification. Using CenTFinder, we identified several novel LSEC-specific protein markers, such as FCN2 and FCN3, which were validated by analysis of previously published single-cell RNAseq data. We also identified PU.1 (encoded by the SPI1 gene) as a major regulator of LSEC-specific immune functions. We show that SPI1 overexpression (combined with the general EC TF ETV2) in human PSCs induces ECs with an LSEC-like phenotype. The ETV2-SPI1-ECs display increased expression of LSEC markers, such as CD32B and MRC1, as well as several of the proposed novel markers. More importantly, ETV2-SPI1-ECs acquire LSEC functions, including uptake of FSA-FITC, as well as labelled IgG. In conclusion, we present the CenTFinder computational tool to identify key regulatory TFs within specific pathways, in this work pathways of lineage specification, and we demonstrate its use by the identification and validation of PU.1 as a master regulator for LSEC fating.


Asunto(s)
Células Endoteliales/metabolismo , Hígado/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Animales , Linaje de la Célula , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Endoteliales/citología , Humanos , Hígado/citología , Ratones , Ratones Endogámicos BALB C , Células Madre Pluripotentes/citología
9.
Toxics ; 10(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35051043

RESUMEN

Traditional toxicity risk assessment approaches have until recently focussed mainly on histochemical readouts for cell death. Modern toxicology methods attempt to deduce a mechanistic understanding of pathways involved in the development of toxicity, by using transcriptomics and other big data-driven methods such as high-content screening. Here, we used a recently described optimised method to differentiate human induced pluripotent stem cells (hiPSCs) to hepatocyte-like cells (HLCs), to assess their potential to classify hepatotoxic and non-hepatotoxic chemicals and their use in mechanistic toxicity studies. The iPSC-HLCs could accurately classify chemicals causing acute hepatocellular injury, and the transcriptomics data on treated HLCs obtained by TempO-Seq technology linked the cytotoxicity to cellular stress pathways, including oxidative stress and unfolded protein response (UPR). Induction of these stress pathways in response to amiodarone, diclofenac, and ibuprofen, was demonstrated to be concentration and time dependent. The transcriptomics data on diclofenac-treated HLCs were found to be more sensitive in detecting differentially expressed genes in response to treatment, as compared to existing datasets of other diclofenac-treated in vitro hepatocyte models. Hence iPSC-HLCs generated by transcription factor overexpression and in metabolically optimised medium appear suitable for chemical toxicity detection as well as mechanistic toxicity studies.

10.
Plant Biotechnol J ; 19(2): 273-284, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32744350

RESUMEN

In the last 20 years, stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), has re-emerged as a major threat to wheat and barley production in Africa and Europe. In contrast to wheat with 60 designated stem rust (Sr) resistance genes, barley's genetic variation for stem rust resistance is very narrow with only ten resistance genes genetically identified. Of these, only one complex locus consisting of three genes is effective against TTKSK, a widely virulent Pgt race of the Ug99 tribe which emerged in Uganda in 1999 and has since spread to much of East Africa and parts of the Middle East. The objective of this study was to assess the functionality, in barley, of cloned wheat Sr genes effective against race TTKSK. Sr22, Sr33, Sr35 and Sr45 were transformed into barley cv. Golden Promise using Agrobacterium-mediated transformation. All four genes were found to confer effective stem rust resistance. The barley transgenics remained susceptible to the barley leaf rust pathogen Puccinia hordei, indicating that the resistance conferred by these wheat Sr genes was specific for Pgt. Furthermore, these transgenic plants did not display significant adverse agronomic effects in the absence of disease. Cloned Sr genes from wheat are therefore a potential source of resistance against wheat stem rust in barley.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad/genética , Hordeum , Enfermedades de las Plantas/genética , Hordeum/genética , Enfermedades de las Plantas/microbiología
11.
ISA Trans ; 110: 117-128, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33121734

RESUMEN

A simple method of controller design for multi-input multi-output (MIMO) processes have been proposed in frequency domain. The intensive calculation for the inverse of the process transfer function matrix is simplified to a great extent by evaluating the process transfer function matrix at a low frequency point. The desired closed loop transfer functions are derived for the process using a single tuning parameter for each diagonal element of the process transfer function matrix which represents the desired closed loop time constant. Centralized PI controllers are then designed using a model matching technique by evaluating the transfer functions at a low frequency point. The PI controllers provide acceptable performances for lag dominated as well as time-delay dominated processes and is also applicable to high-dimensional processes. The proposed method is extended for the non-square MIMO processes using two approaches one of which squares up the process transfer function matrix to apply the proposed technique while the other is based on pseudo-inverse evaluation of the process transfer function matrix at a low frequency point.

12.
Nat Commun ; 11(1): 6348, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311506

RESUMEN

Long non-coding RNAs are important regulators of biological processes including immune responses. The immunoregulatory functions of lncRNAs have been revealed primarily in murine models with limited understanding of lncRNAs in human immune responses. Here, we identify lncRNA LUCAT1 which is upregulated in human myeloid cells stimulated with lipopolysaccharide and other innate immune stimuli. Targeted deletion of LUCAT1 in myeloid cells increases expression of type I interferon stimulated genes in response to LPS. By contrast, increased LUCAT1 expression results in a reduction of the inducible ISG response. In activated cells, LUCAT1 is enriched in the nucleus where it associates with chromatin. Further, LUCAT1 limits transcription of interferon stimulated genes by interacting with STAT1 in the nucleus. Together, our study highlights the role of the lncRNA LUCAT1 as a post-induction feedback regulator which functions to restrain the immune response in human cells.


Asunto(s)
Regulación de la Expresión Génica , Interferones/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Fenómenos Biológicos , Cromatina/metabolismo , Citocinas/metabolismo , Retroalimentación , Técnicas de Silenciamiento del Gen , Humanos , Inmunidad Innata/efectos de los fármacos , Lipopolisacáridos/efectos adversos , Ratones , Células Mieloides/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Proteínas , Factor de Transcripción STAT1/metabolismo , Células THP-1
13.
Front Plant Sci ; 11: 570180, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072145

RESUMEN

Wheat stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), is regaining prominence due to the recent emergence of virulent isolates and epidemics in Africa, Europe and Central Asia. The development and deployment of wheat cultivars with multiple stem rust resistance (Sr) genes stacked together will provide durable resistance. However, certain disease resistance genes can suppress each other or fail in particular genetic backgrounds. Therefore, the function of each Sr gene must be confirmed after incorporation into an Sr-gene stack. This is difficult when using pathogen disease assays due to epistasis from recognition of multiple avirulence (Avr) effectors. Heterologous delivery of single Avr effectors can circumvent this limitation, but this strategy is currently limited by the paucity of cloned Pgt Avrs. To accelerate Avr gene cloning, we outline a procedure to develop a mutant population of Pgt spores and select for gain-of-virulence mutants. We used ethyl methanesulphonate (EMS) to mutagenize urediniospores and create a library of > 10,000 independent mutant isolates that were combined into 16 bulks of ~658 pustules each. We sequenced random mutants and determined the average mutation density to be 1 single nucleotide variant (SNV) per 258 kb. From this, we calculated that a minimum of three independently derived gain-of-virulence mutants is required to identify a given Avr gene. We inoculated the mutant library onto plants containing Sr43, Sr44, or Sr45 and obtained 9, 4, and 14 mutants with virulence toward Sr43, Sr44, or Sr45, respectively. However, only mutants identified on Sr43 and Sr45 maintained their virulence when reinolculated onto the lines from which they were identified. We further characterized 8 mutants with virulence toward Sr43. These also maintained their virulence profile on the stem rust international differential set containing 20 Sr genes, indicating that they were most likely not accidental contaminants. In conclusion, our method allows selecting for virulent mutants toward targeted resistance (R) genes. The development of a mutant library from as little as 320 mg spores creates a resource that enables screening against several R genes without the need for multiple rounds of spore multiplication and mutagenesis.

14.
Mol Plant Microbe Interact ; 33(11): 1286-1298, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32779520

RESUMEN

In the last 20 years, severe wheat stem rust outbreaks have been recorded in Africa, Europe, and Central Asia. This previously well controlled disease, caused by the fungus Puccinia graminis f. sp. tritici, has reemerged as a major threat to wheat cultivation. The stem rust (Sr) resistance gene Sr22 encodes a nucleotide-binding and leucine-rich repeat receptor which confers resistance to the highly virulent African stem rust isolate Ug99. Here, we show that the Sr22 gene is conserved among grasses in the Triticeae and Poeae lineages. Triticeae species contain syntenic loci with single-copy orthologs of Sr22 on chromosome 7, except Hordeum vulgare, which has experienced major expansions and rearrangements at the locus. We also describe 14 Sr22 sequence variants obtained from both Triticum boeoticum and the domesticated form of this species, T. monococcum, which have been postulated to encode both functional and nonfunctional Sr22 alleles. The nucleotide sequence analysis of these alleles identified historical sequence exchange resulting from recombination or gene conversion, including breakpoints within codons, which expanded the coding potential at these positions by introduction of nonsynonymous substitutions. Three Sr22 alleles were transformed into wheat cultivar Fielder and two postulated resistant alleles from Schomburgk (hexaploid wheat introgressed with T. boeoticum segment carrying Sr22) and T. monococcum accession PI190945, respectively, conferred resistance to P. graminis f. sp. tritici race TTKSK, thereby unequivocally confirming Sr22 effectiveness against Ug99. The third allele from accession PI573523, previously believed to confer susceptibility, was confirmed as nonfunctional against Australian P. graminis f. sp. tritici race 98-1,2,3,5,6.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Basidiomycota/patogenicidad , Resistencia a la Enfermedad , Enfermedades de las Plantas/genética , Poaceae/genética , Australia , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Evolución Molecular , Variación Genética , Genómica , Enfermedades de las Plantas/microbiología , Poaceae/microbiología
15.
Science ; 369(6504): 706-712, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32527925

RESUMEN

Viral infections of the lower respiratory tract are a leading cause of mortality. Mounting evidence indicates that most severe cases are characterized by aberrant immune responses and do not depend on viral burden. In this study, we assessed how type III interferons (IFN-λ) contribute to the pathogenesis induced by RNA viruses. We report that IFN-λ is present in the lower, but not upper, airways of patients with coronavirus disease 2019 (COVID-19). In mice, we demonstrate that IFN-λ produced by lung dendritic cells in response to a synthetic viral RNA induces barrier damage, causing susceptibility to lethal bacterial superinfections. These findings provide a strong rationale for rethinking the pathophysiological role of IFN-λ and its possible use in clinical practice against endemic viruses, such as influenza virus as well as the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/metabolismo , Células Dendríticas/metabolismo , Interferones/fisiología , Pulmón/metabolismo , Pulmón/patología , Neumonía Viral/inmunología , Neumonía Viral/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/inmunología , COVID-19 , Proliferación Celular , Citocinas/metabolismo , Humanos , Interferón Tipo I/metabolismo , Interferones/metabolismo , Pulmón/inmunología , Ratones , Ratones Endogámicos C57BL , Nasofaringe/inmunología , Pandemias , Poli I-C/administración & dosificación , Mucosa Respiratoria/patología , SARS-CoV-2 , Transducción de Señal , Infecciones Estafilocócicas/metabolismo , Sobreinfección , Receptor Toll-Like 3/metabolismo , Interferón lambda
16.
Sci Rep ; 10(1): 7573, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32371881

RESUMEN

Wild wheat species Aegilops peregrina (UpUpSpSp), harbours resistance to various diseases including leaf rust and stripe rust. Inheritance studies in a recombinant inbred line population of wheat-Ae. peregrina introgression line IL pau16061 revealed the transfer of a single major dominant gene conditioning all stage resistance, herein temporarily designated as LrAp. Genomic in situ hybridisation of IL pau16061, resistant and susceptible RILs with U- and S-genome DNA probes confirmed that the introgression with leaf rust resistance is from the Up genome of Ae. peregrina. Fluorescence in situ hybridisation using chromosome specific probes identified Up genome introgression to be on the long arm of wheat chromosome 6B. To genetically map LrAp, bulked segregant analysis was combined with resistance gene enrichment sequencing (MapRenSeq). Five nucleotide binding leucine-rich repeat contigs distinguished resistant and susceptible bulks and single nucleotide polymorphism (SNP) markers from these contigs co-segregated with LrAp. All five RenSeq NB_ARC contigs showed identity with the long arm of wheat chromosome 6B confirming the introgression on 6BL which we propose is a compensating translocation from Ae. peregrina chromosome 6UpL due to homoeology between the alien and wheat chromosomes. The SNP markers developed in this study will aid in cloning and marker assisted gene pyramiding of LrAp.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología , Mapeo Cromosómico , Genes de Plantas , Hibridación Fluorescente in Situ
17.
Elife ; 92020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32208137

RESUMEN

Understanding the function of genes within staple crops will accelerate crop improvement by allowing targeted breeding approaches. Despite their importance, a lack of genomic information and resources has hindered the functional characterisation of genes in major crops. The recent release of high-quality reference sequences for these crops underpins a suite of genetic and genomic resources that support basic research and breeding. For wheat, these include gene model annotations, expression atlases and gene networks that provide information about putative function. Sequenced mutant populations, improved transformation protocols and structured natural populations provide rapid methods to study gene function directly. We highlight a case study exemplifying how to integrate these resources. This review provides a helpful guide for plant scientists, especially those expanding into crop research, to capitalise on the discoveries made in Arabidopsis and other plants. This will accelerate the improvement of crops of vital importance for food and nutrition security.


Asunto(s)
Arabidopsis/genética , Productos Agrícolas/genética , Genoma de Planta/genética , Triticum/genética , Genómica/métodos , Anotación de Secuencia Molecular/métodos , Fitomejoramiento/métodos , Poliploidía
18.
Nat Biotechnol ; 37(2): 139-143, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30718880

RESUMEN

Disease resistance (R) genes from wild relatives could be used to engineer broad-spectrum resistance in domesticated crops. We combined association genetics with R gene enrichment sequencing (AgRenSeq) to exploit pan-genome variation in wild diploid wheat and rapidly clone four stem rust resistance genes. AgRenSeq enables R gene cloning in any crop that has a diverse germplasm panel.


Asunto(s)
Clonación Molecular , Productos Agrícolas/genética , Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Mapeo Cromosómico , Estudios de Asociación Genética , Variación Genética , Genómica , Genotipo , Modelos Genéticos , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple , Plantones , Triticum/genética
19.
Theor Appl Genet ; 132(5): 1473-1485, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30706082

RESUMEN

KEY MESSAGE: Novel rust resistance genes LrP and YrP from Ae. peregrina identified on chromosome 5D and the linked markers will aid deployment of these genes in combination with other major/minor genes. Aegilops peregrina, a wild tetraploid relative of wheat with genome constitution UUSS, displays genetic variation for resistance to leaf and stripe (yellow) rust. The wheat Ae. peregrina introgression line, IL pau16058, harbouring leaf and stripe rust resistance, was crossed with wheat cv. WL711 to generate an F2:3 mapping population. Inheritance studies on this population indicated the transfer of dominant co-segregating resistance to leaf and stripe rust. Ethyl methane sulphonate mutagenesis of IL pau16058 identified independent loss-of-function mutants for leaf and stripe rust resistance, indicating that the leaf and stripe rust resistance is controlled by independent genes, herein designated LrP and YrP, respectively. A high-resolution genetic map of LrP and YrP was constructed using the Illumina Infinium iSelect 90K wheat array and resistance gene enrichment sequencing (RenSeq) markers. The map spans 4.19 cM on the distal-most region of the short arm of chromosome 5D, consisting of eight SNP markers and one microsatellite marker. LrP and YrP co-segregated with markers BS00163889 and 5DS44573_snp and was flanked distally by the SNP marker BS00129707 and proximally by 5DS149010, defining a 15.71 Mb region in the RefSeq v1.0 genome assembly.


Asunto(s)
Aegilops/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Aegilops/microbiología , Mapeo Cromosómico , Cromosomas de las Plantas , Genoma de Planta , Enfermedades de las Plantas/microbiología
20.
Nat Protoc ; 13(12): 2944-2963, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30446746

RESUMEN

'Speed breeding' (SB) shortens the breeding cycle and accelerates crop research through rapid generation advancement. SB can be carried out in numerous ways, one of which involves extending the duration of plants' daily exposure to light, combined with early seed harvest, to cycle quickly from seed to seed, thereby reducing the generation times for some long-day (LD) or day-neutral crops. In this protocol, we present glasshouse and growth chamber-based SB approaches with supporting data from experimentation with several crops. We describe the conditions that promote the rapid growth of bread wheat, durum wheat, barley, oat, various Brassica species, chickpea, pea, grass pea, quinoa and Brachypodium distachyon. Points of flexibility within the protocols are highlighted, including how plant density can be increased to efficiently scale up plant numbers for single-seed descent (SSD). In addition, instructions are provided on how to perform SB on a small scale in a benchtop growth cabinet, enabling optimization of parameters at a low cost.


Asunto(s)
Avena/crecimiento & desarrollo , Brachypodium/crecimiento & desarrollo , Brassica/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Hordeum/crecimiento & desarrollo , Fitomejoramiento/métodos , Triticum/crecimiento & desarrollo , Fitomejoramiento/economía , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...