Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 13(1): 21309, 2023 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-38042916

RESUMEN

India is the second-highest contributor to the post-2000 global greening. However, with satellite data, here we show that this 18.51% increase in Leaf Area Index (LAI) during 2001-2019 fails to translate into increased carbon uptake due to warming constraints. Our analysis further shows 6.19% decrease in Net Primary Productivity (NPP) during 2001-2019 over the temporally consistent forests in India despite 6.75% increase in LAI. We identify hotspots of statistically significant decreasing trends in NPP over the key forested regions of Northeast India, Peninsular India, and the Western Ghats. Together, these areas contribute to more than 31% of the NPP of India (1274.8 TgC.year-1). These three regions are also the warming hotspots in India. Granger Causality analysis confirms that temperature causes the changes in net-photosynthesis of vegetation. Decreasing photosynthesis and stable respiration, above a threshold temperature, over these regions, as seen in observations, are the key reasons behind the declining NPP. Our analysis shows that warming has already started affecting carbon uptake in Indian forests and calls for improved climate resilient forest management practices in a warming world.


Asunto(s)
Clima , Bosques , Temperatura , Cambio Climático , India , Carbono , Ecosistema
3.
Nat Commun ; 14(1): 5928, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37739937

RESUMEN

Massive river interlinking projects are proposed to offset observed increasing droughts and floods in India, the most populated country in the world. These projects involve water transfer from surplus to deficit river basins through reservoirs and canals without an in-depth understanding of the hydro-meteorological consequences. Here, we use causal delineation techniques, a coupled regional climate model, and multiple reanalysis datasets, and show that land-atmosphere feedbacks generate causal pathways between river basins in India. We further find that increased irrigation from the transferred water reduces mean rainfall in September by up to 12% in already water-stressed regions of India. We observe more drying in La Niña years compared to El Niño years. Reduced September precipitation can dry rivers post-monsoon, augmenting water stress across the country and rendering interlinking dysfunctional. Our findings highlight the need for model-guided impact assessment studies of large-scale hydrological projects across the globe.

4.
Sci Rep ; 13(1): 9960, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340018

RESUMEN

India is the world's second largest producer of wheat, with more than 40% increase in production since 2000. Increasing temperatures raise concerns about wheat's sensitivity to heat. Traditionally-grown sorghum is an alternative rabi (winter season) cereal, but area under sorghum production has declined more than 20% since 2000. We examine sensitivity of wheat and sorghum yields to historical temperature and compare water requirements in districts where both cereals are cultivated. Wheat yields are sensitive to increases in maximum daily temperature in multiple stages of the growing season, while sorghum does not display the same sensitivity. Crop water requirements (mm) are 1.4 times greater for wheat than sorghum, mainly due to extension of its growing season into summer. However, water footprints (m3 per ton) are approximately 15% less for wheat due to its higher yields. Sensitivity to future climate projections, without changes in management, suggests 5% decline in wheat yields and 12% increase in water footprints by 2040, compared with 4% increase in water footprint for sorghum. On balance, sorghum provides a climate-resilient alternative to wheat for expansion in rabi cereals. However, yields need to increase to make sorghum competitive for farmer profits and efficient use of land to provide nutrients.


Asunto(s)
Grano Comestible , Sorghum , Estaciones del Año , Productos Agrícolas , India , Triticum , Cambio Climático , Agua
5.
Sci Total Environ ; 879: 163003, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36965726

RESUMEN

The enormous progress in weather and extended range predictions for the Indian monsoon over the last decade has not been translated to operationalized irrigation water management tools despite many agricultural advisories from operational agencies. The limited implementation is mainly due to the resolution mismatches of forecasts and decision-needs and a lack of soil moisture monitoring networks. Sustained soil moisture monitoring suffers from the high cost to farmers in installing distributed sensors. Here we develop an irrigation water management tool for the farmers at farm scale, which starts with utilizing and merging a few available soil moisture sensors and L-band satellite observations of surface soil moisture using machine learning. Such derived soil moisture field is used as the initial condition with the multi-ensemble future rainfall for the following few weeks given the weather/extended range forecasts in a farm-scale ecohydrological model. This ecohydrological model is integrated with Monte-Carlo simulations within a stochastic optimization framework to minimize water use while not allowing the soil moisture to drop below a threshold level with a certain probability. The optimization results in water arrangement decisions 2 weeks in advance and water application decisions 1-7 days in advance. We also estimate the water storage capacity needed at farm scale for effective water utilization. We find that 20-45 % and 17-35 % water savings were achievable for Kharif and Rabi seasons, respectively, without losing any yield when applied to grape farms of Nashik, Maharashtra, India. The proposed framework is co-developed with the farmers and can be used in any region for any crops, since it is generalized and easy to transfer. This is an extension of our earlier work to an end-to-end system using satellite data for soil moisture.

6.
Sci Rep ; 13(1): 888, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650187

RESUMEN

India receives more than 70% of its annual rainfall in the summer monsoon from June to September. The rainfall is scanty and scattered for the rest of the year. Combining satellite data and model simulations, we show that the soil-vegetation continuum works as a natural capacitor of water, storing the monsoon pulse and releasing the moisture to the atmosphere through evapotranspiration over approximately 135 days when the moisture supply from precipitation is less than the evapotranspiration losses. The total Gross Primary Productivity of vegetation in India during the capacitor period accounts for almost 35% of the total annual GPP value. It primarily depends on the soil moisture at the beginning of the period, a measure of moisture capacitance of soil, with a correlation of 0.6. Given that India is the second largest contributor to recent global greening, its soil-vegetation water capacitance plays a significant role in the global carbon balance.


Asunto(s)
Ecosistema , Suelo , Estaciones del Año , Atmósfera , Agua
7.
Sci Rep ; 12(1): 18395, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319724

RESUMEN

Continuous remote-sensed daily fields of ocean color now span over two decades; however, it still remains a challenge to examine the ocean ecosystem processes, e.g., phenology, at temporal frequencies of less than a month. This is due to the presence of significantly large gaps in satellite data caused by clouds, sun-glint, and hardware failure; thus, making gap-filling a prerequisite. Commonly used techniques of gap-filling are limited to single value imputation, thus ignoring the error estimates. Though convenient for datasets with fewer missing pixels, these techniques introduce potential biases in datasets having a higher percentage of gaps, such as in the tropical Indian Ocean during the summer monsoon, the satellite coverage is reduced up to 40% due to the seasonally varying cloud cover. In this study, we fill the missing values in the tropical Indian Ocean with a set of plausible values (here, 10,000) using the classical Monte-Carlo method and prepare 10,000 gap-filled datasets of ocean color. Using the Monte-Carlo method for gap-filling provides the advantage to estimate the phenological indicators with an uncertainty range, to indicate the likelihood of estimates. Quantification of uncertainty arising due to missing values is critical to address the importance of underlying datasets and hence, motivating future observations.


Asunto(s)
Ecosistema , Océano Índico , Estaciones del Año
8.
Nat Commun ; 13(1): 5349, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097265

RESUMEN

Increased occurrence of heatwaves across different parts of the world is one of the characteristic signatures of anthropogenic warming. With a 1.3 billion population, India is one of the hot spots that experience deadly heatwaves during May-June - yet the large-scale physical mechanism and teleconnection patterns driving such events remain poorly understood. Here using observations and controlled climate model experiments, we demonstrate a significant footprint of the far-reaching Pacific Meridional Mode (PMM) on the heatwave intensity (and duration) across North Central India (NCI) - the high risk region prone to heatwaves. A strong positive phase of PMM leads to a significant increase in heatwave intensity and duration over NCI (0.8-2 °C and 3-6 days; p < 0.05) and vice-versa. The current generation (CMIP6) climate models that adequately capture the PMM and their responses to NCI heatwaves, project significantly higher intensities of future heatwaves (0.5-1 °C; p < 0.05) compared to all model ensembles. These differences in the intensities of heatwaves could significantly increase the mortality (by ≈150%) and therefore can have substantial implications on designing the mitigation and adaptation strategies.


Asunto(s)
Aclimatación , Rayos Infrarrojos , India , Océano Pacífico , Estaciones del Año
9.
Sci Total Environ ; 851(Pt 1): 158002, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35985595

RESUMEN

Quantifying flood hazards by employing hydraulic/hydrodynamic models for flood risk mapping is a widely implemented non-structural flood management strategy. However, the unavailability of multi-domain and multi-dimensional input data and expensive computational resources limit its application in resource-constrained regions. The fifth and sixth IPCC assessment reports recommend including vulnerability and exposure components along with hazards for capturing risk on human-environment systems from natural and anthropogenic sources. In this context, the present study showcases a novel flood risk mapping approach that considers a combination of geomorphic flood descriptor (GFD)-based flood susceptibility and often neglected socio-economic vulnerability components. Three popular Machine Learning (ML) models, namely Decision Tree (DT), Random Forest (RF), and Gradient-boosted Decision Trees (GBDT), are evaluated for their abilities to combine digital terrain model-derived GFDs for quantifying flood susceptibility in a flood-prone district, Jagatsinghpur, located in the lower Mahanadi River basin, India. The area under receiver operating characteristics curve (AUC) along with Cohen's kappa are used to identify the best ML model. It is observed that the RF model performs better compared to the other two models on both training and testing datasets, with AUC score of 0.88 on each. The socio-economic vulnerability assessment follows an indicator-based approach by employing the Charnes-Cooper-Rhodes (CCR) model of Data Envelopment Analysis (DEA), an efficient non-parametric ranking method. It combines the district's relevant socio-economic sensitivity and adaptive capacity indicators. The flood risk classes at the most refined administrative scale, i.e., village level, are determined with the Jenks natural breaks algorithm using flood susceptibility and socio-economic vulnerability scores estimated by the RF and CCR-DEA models, respectively. It was observed that >40 % of the villages spread over Jagatsinghpur face high and very high flood risk. The proposed novel framework is generic and can be used to derive a wide variety of flood susceptibility, vulnerability, and subsequently risk maps under a data-constrained scenario. Furthermore, since this approach is relatively data and computationally parsimonious, it can be easily implemented over large regions. The exhaustive flood maps will facilitate effective flood control and floodplain planning.


Asunto(s)
Inundaciones , Ríos , Aprendizaje Automático , Curva ROC , Factores Socioeconómicos
10.
Nat Commun ; 13(1): 4275, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879272

RESUMEN

Hot extremes are anticipated to be more frequent and more intense under climate change, making the Indo-Gangetic Plain of India, with a 400 million population, vulnerable to heat stress. Recent studies suggest that irrigation has significant cooling and moistening effects over this region. While large-scale irrigation is prevalent in the Indo-Gangetic Plain during the two major cropping seasons, Kharif (Jun-Sep) and Rabi (Nov-Feb), hot extremes are reported in the pre-monsoon months (Apr-May) when irrigation activities are minimal. Here, using observed irrigation data and regional climate model simulations, we show that irrigation effects on heat stress during pre-monsoon are 4.9 times overestimated with model-simulated irrigation as prescribed in previous studies. We find that irrigation increases relative humidity by only 2.5%, indicating that irrigation is a non-crucial factor enhancing the moist heat stress. On the other hand, we detect causal effects of aerosol abundance on the daytime land surface temperature. Our study highlights the need to consider actual irrigation data in testing model-driven hypotheses related to the land-atmosphere feedback driven by human water management.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Atmósfera , Monitoreo del Ambiente , Respuesta al Choque Térmico , Humanos , India , Estaciones del Año
11.
Sci Total Environ ; 739: 139863, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32544680

RESUMEN

The terrestrial water balance can be represented by the ratio of evapotranspiration to precipitation, which is expressed as a function of the aridity index (ϕ) and the basin characteristics parameter (n) in the Budyko framework. Traditionally n is assumed to be a constant for a catchment, independent to the climatic variables and altered only by changes in land cover and human activities. Another conceptual framework, Climate Change Impact Hypotheses (CCUW), makes similar assumption of constant catchment efficiency for evapotranspiration. In this study, using Variation Infiltration Capacity (VIC) model experiments, we show that the basin characteristics parameter and catchment efficiency are influenced by aridity index, in contrast with the traditional assumption. We also examine the analytical derivation of a functional form of Budyko equation and show that the assumption of n being independent of the climate variables is not valid. Hydrologic simulations with VIC show that the influence of seasonal change in vegetation (in the form of Leaf Area Index) on n is negligible compared to that of aridity, but the intra-seasonal rainfall variability does have impacts. We demonstrate these with a case study on impact of 1.5 °C and 2 °C global warming scenarios on the terrestrial water cycle in the Ganga river basin, one of the large river basins of South Asia with multiple sub-basins. Our findings imply that, with these assumptions, classical conceptual frameworks cannot fully explain the hydrometeorological impacts of climate change. These results highlight the importance of model evaluation and assessment of model assumptions before regional impact assessment studies.

12.
Sci Total Environ ; 714: 136360, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-31982733

RESUMEN

The regional water storage shifting causes nonstationary spatial distribution of droughts and flooding, leading to water management challenges, environmental degradation and economic losses. The regional water storage shifting is becoming evident due to the increasing climate variability. However, the previous studies for climate drivers behind the water storage shifting are not rigorously quantified. In this study, the terrestrial water storage (TWS) spatial shifting pattern during 2002-2017 over the China-India border area (CIBA) is developed using the Gravity Recovery and Climate Experiment (GRACE), suggesting that the Indus-Ganges-Brahmaputra basin (IGBB) was wetting while the central Qinghai-Tibet Plateau (QTP) was drying. Similar drying and wetting patterns were also found in the precipitation, snow depth, Palmer Drought Severity Index (PDSI) and potential evaporation data. Based on our newly proposed Indian monsoon (IM) and western North Pacific monsoon (WNPM) variation indices, the water shifting pattern over the CIBA was found to be affected by the weakening of the variation of IM and WNPM through modulating the regional atmospheric circulation. The weakening of IM and WNPM variations has shown to be attributed to the decreasing temperature gradient between the CIBA and the Indian Ocean, and possibly related to increasing regional temperatures associated with the increasing global temperature. As the global warming intensifies, it is expected that the regional TWS shifting pattern over the CIBA will be further exaggerated, stressing the need of advancing water resources management for local communities in the region.

13.
J Environ Manage ; 255: 109733, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31783207

RESUMEN

Identification of flood-risk dynamics is pivotal for refurbishing the existing and future flood-management options. The present study quantifies the marginal and compound contributions of hazard and vulnerability to flood-risk through an innovative concept of Risk-classifier, designed in the form of a 5 × 5 choropleth. The proposed framework is demonstrated at the finest administrative scale of village-level over Jagatsinghpur district in Mahanadi River basin, Odisha (India) for two-time frames: Scenario-I (1970-2011) and Scenario-II (1970-2001). An increase in high and very high hazard and vulnerable villages is noticed in Scenario-I, the majority of them lying in the coastal stretches (S-E region) and adjoining flood plains of Mahanadi River (N-W region). Scenario-I is characterized by the majority of hazard-driven and compound (both hazard and vulnerability) risk villages, while Scenario II is characterized by a majority of vulnerability driven-risk villages. For the vulnerability-driven risk villages, rigorous enforcement of policies and mitigation schemes are recommended, while for hazard-driven risk villages, enhancement of structural measures and flood-plain zoning should be exercised. Such exhaustive flood-risk information may serve as a valuable cartographic product for the civic authorities and stakeholders and help in prioritizing flood mitigation actions for improved environmental planning and management.


Asunto(s)
Inundaciones , Ríos , Planificación de Ciudades , India , Factores Socioeconómicos
14.
Sci Rep ; 8(1): 3918, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500451

RESUMEN

While satellite data provides a strong robust signature of urban feedback on extreme precipitation; urbanization signal is often not so prominent with station level data. To investigate this, we select the case study of Mumbai, India and perform a high resolution (1 km) numerical study with Weather Research and Forecasting (WRF) model for eight extreme rainfall days during 2014-2015. The WRF model is coupled with two different urban schemes, the Single Layer Urban Canopy Model (WRF-SUCM), Multi-Layer Urban Canopy Model (WRF-MUCM). The differences between the WRF-MUCM and WRF-SUCM indicate the importance of the structure and characteristics of urban canopy on modifications in precipitation. The WRF-MUCM simulations resemble the observed distributed rainfall. WRF-MUCM also produces intensified rainfall as compared to the WRF-SUCM and WRF-NoUCM (without UCM). The intensification in rainfall is however prominent at few pockets of urban regions, that is seen in increased spatial variability. We find that the correlation of precipitation across stations within the city falls below statistical significance at a distance greater than 10 km. Urban signature on extreme precipitation will be reflected on station rainfall only when the stations are located inside the urban pockets having intensified precipitation, which needs to be considered in future analysis.

15.
Nat Commun ; 8(1): 708, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28974680

RESUMEN

Socioeconomic challenges continue to mount for half a billion residents of central India because of a decline in the total rainfall and a concurrent rise in the magnitude and frequency of extreme rainfall events. Alongside a weakening monsoon circulation, the locally available moisture and the frequency of moisture-laden depressions from the Bay of Bengal have also declined. Here we show that despite these negative trends, there is a threefold increase in widespread extreme rain events over central India during 1950-2015. The rise in these events is due to an increasing variability of the low-level monsoon westerlies over the Arabian Sea, driving surges of moisture supply, leading to extreme rainfall episodes across the entire central subcontinent. The homogeneity of these severe weather events and their association with the ocean temperatures underscores the potential predictability of these events by two-to-three weeks, which offers hope in mitigating their catastrophic impact on life, agriculture and property.Against the backdrop of a declining monsoon, the number of extreme rain events is on the rise over central India. Here the authors identify a threefold increase in widespread extreme rains over the region during 1950-2015, driven by an increasing variability of the low-level westerlies over the Arabian Sea.

16.
Sci Rep ; 7(1): 12729, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28986591

RESUMEN

Summer Monsoon Rainfall over the Indian subcontinent displays a prominent variability at intraseasonal timescales with 10-60 day periods of high and low rainfall, known as active and break periods, respectively. Here, we study moisture transport from the oceanic and terrestrial sources to the Indian landmass at intraseasonal timescales using a dynamic recycling model, based on a Lagrangian trajectory approach applied to the ECMWF-ERA-interim reanalysis data. Intraseasonal variation of monsoon rainfall is associated with both a north-south pattern from the Indian landmass to the Indian Ocean and an east-west pattern from the Core Monsoon Zone (CMZ) to eastern India. We find that the oceanic sources of moisture, namely western and central Indian Oceans (WIO and CIO) contribute to the former, while the major terrestrial source, Ganga basin (GB) contributes to the latter. The formation of the monsoon trough over Indo-Gangetic plain during the active periods results in a high moisture transport from the Bay of Bengal and GB into the CMZ in addition to the existing southwesterly jet from WIO and CIO. Our results indicate the need for the correct representation of both oceanic and terrestrial sources of moisture in models for simulating the intraseasonal variability of the monsoon.

17.
Sci Adv ; 3(6): e1700066, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28630921

RESUMEN

Rising global temperatures are causing increases in the frequency and severity of extreme climatic events, such as floods, droughts, and heat waves. We analyze changes in summer temperatures, the frequency, severity, and duration of heat waves, and heat-related mortality in India between 1960 and 2009 using data from the India Meteorological Department. Mean temperatures across India have risen by more than 0.5°C over this period, with statistically significant increases in heat waves. Using a novel probabilistic model, we further show that the increase in summer mean temperatures in India over this period corresponds to a 146% increase in the probability of heat-related mortality events of more than 100 people. In turn, our results suggest that future climate warming will lead to substantial increases in heat-related mortality, particularly in developing low-latitude countries, such as India, where heat waves will become more frequent and populations are especially vulnerable to these extreme temperatures. Our findings indicate that even moderate increases in mean temperatures may cause great increases in heat-related mortality and support the efforts of governments and international organizations to build up the resilience of these vulnerable regions to more severe heat waves.


Asunto(s)
Calor , Rayos Infrarrojos , Mortalidad , Algoritmos , Clima , Calor/efectos adversos , Humanos , India , Rayos Infrarrojos/efectos adversos , Modelos Teóricos
18.
Sci Rep ; 7: 40178, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28067276

RESUMEN

The difference in land surface temperature (LST) between an urban region and its nearby non-urban region, known as surface urban heat island intensity (SUHII), is usually positive as reported in earlier studies. India has experienced unprecedented urbanization over recent decades with an urban population of 380 million. Here, we present the first study of the diurnal and seasonal characteristics of SUHII in India. We found negative SUHII over a majority of urban areas during daytime in pre-monsoon summer (MAM), contrary to the expected impacts of urbanization. This unexpected pattern is associated with low vegetation in non-urban regions during dry pre-monsoon summers, leading to reduced evapotranspiration (ET). During pre-monsoon summer nights, a positive SUHII occurs when urban impacts are prominent. Winter daytime SUHII becomes positive in Indo-Gangetic plain. We attribute such diurnal and seasonal behaviour of SUHII to the same of the differences in ET between urban and non-urban regions. Higher LST in non-urban regions during pre-monsoon summer days results in intensified heatwaves compared to heatwaves in cities, in contrast to presumptions made in the literature. These observations highlight the need for re-evaluation of SUHII in India for climate adaptation, heat stress mitigation, and analysis of urban micro-climates.

20.
Sci Rep ; 6: 32177, 2016 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-27553384

RESUMEN

Weakening of Indian summer monsoon rainfall (ISMR) is traditionally linked with large-scale perturbations and circulations. However, the impacts of local changes in land use and land cover (LULC) on ISMR have yet to be explored. Here, we analyzed this topic using the regional Weather Research and Forecasting model with European Center for Medium range Weather Forecast (ECMWF) reanalysis data for the years 2000-2010 as a boundary condition and with LULC data from 1987 and 2005. The differences in LULC between 1987 and 2005 showed deforestation with conversion of forest land to crop land, though the magnitude of such conversion is uncertain because of the coarse resolution of satellite images and use of differential sources and methods for data extraction. We performed a sensitivity analysis to understand the impacts of large-scale deforestation in India on monsoon precipitation and found such impacts are similar to the observed changes in terms of spatial patterns and magnitude. We found that deforestation results in weakening of the ISMR because of the decrease in evapotranspiration and subsequent decrease in the recycled component of precipitation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...