Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 13667, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608151

RESUMEN

The Indo-Gangetic Plain (IGP) experiences severe air pollution every winter, with ammonium chloride and ammonium nitrate as the major inorganic fractions of fine aerosols. Many past attempts to tackle air pollution in the IGP were inadequate, as they targeted a subset of the primary pollutants in an environment where the majority of the particulate matter burden is secondary in nature. Here, we provide new mechanistic insight into aerosol mitigation by integrating the ISORROPIA-II thermodynamical model with high-resolution simultaneous measurements of precursor gases and aerosols. A mathematical framework is explored to investigate the complex interaction between hydrochloric acid (HCl), nitrogen oxides (NOx), ammonia (NH3), and aerosol liquid water content (ALWC). Aerosol acidity (pH) and ALWC emerge as governing factors that modulate the gas-to-particle phase partitioning and mass loading of fine aerosols. Six "sensitivity regimes" were defined, where PM1 and PM2.5 fall in the "HCl and HNO3 sensitive regime", emphasizing that HCl and HNO3 reductions would be the most effective pathway for aerosol mitigation in the IGP, which is ammonia-rich during winter. This study provides evidence that precursor abatement for aerosol mitigation should not be based on their descending mass concentrations but instead on their sensitivity to high aerosol loading.

2.
Heliyon ; 9(6): e16939, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37332916

RESUMEN

Stubble-burning in northern India is an important source of atmospheric particulate matter (PM) and trace gases, which significantly impact local and regional climate, in addition to causing severe health risks. Scientific research on assessing the impact of these burnings on the air quality over Delhi is still relatively sparse. The present study analyzes the satellite-retrieved stubble-burning activities in the year 2021, using the MODIS active fire count data for Punjab and Haryana, and assesses the contribution of CO and PM2.5 from such biomass-burning activities to the pollution load in Delhi. The analysis suggests that the satellite-retrieved fire counts in Punjab and Haryana were the highest among the last five years (2016-2021). Further, we note that the stubble-burning fires in the year 2021 are delayed by ∼1 week compared to that in the year 2016. To quantify the contribution of the fires to the air pollution in Delhi, we use tagged tracers for CO and PM2.5 emissions from fire emissions in the regional air quality forecasting system. The modeling framework suggests a maximum daily mean contribution of the stubble-burning fires to the air pollution in Delhi in the months of October-November 2021 to be around 30-35%. We find that the contribution from stubble burning activities to the air quality in Delhi is maximum (minimum) during the turbulent hours of late morning to afternoon (calmer hours of evening to early morning). The quantification of this contribution is critical from the crop-residue and air-quality management perspective for policymakers in the source and the receptors regions, respectively.

3.
Environ Monit Assess ; 195(5): 560, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37052717

RESUMEN

The ability of a chemical transport model to simulate accurate meteorological and chemical processes depends upon the physical parametrizations and quality of meteorological input data such as initial/boundary conditions. In this study, weather research and forecasting model coupled with chemistry (WRF-Chem) is used to test the sensitivity of PM2.5 predictions to planetary boundary layer (PBL) parameterization schemes (YSU, MYJ, MYNN, ACM2, and Boulac) and meteorological initial/boundary conditions (FNL, ERA-Interim, GDAS, and NCMRWF) over Indo-Gangetic Plain (Delhi, Punjab, Haryana, Uttar Pradesh, and Rajasthan) during the winter period (December 2017 to January 2018). The aim is to select the model configuration for simulating PM2.5 which shows the lowest errors and best agreement with the observed data. The best results were achieved with initial/boundary conditions from ERA and GDAS datasets and local PBL parameterization (MYJ and MYNN). It was also found that PM2.5 concentrations are relatively less sensitive to changes in initial/boundary conditions but in contrast show a stronger sensitivity to changes in the PBL scheme. Moreover, the sensitivity of the simulated PM2.5 to the choice of PBL scheme is more during the polluted hours of the day (evening to early morning), while that to the choice of the meteorological input data is more uniform and subdued over the day. This work indicates the optimal model setup in terms of choice of initial/boundary conditions datasets and PBL parameterization schemes for future air quality simulations. It also highlights the importance of the choice of PBL scheme over the choice of meteorological data set to the simulated PM2.5 by a chemical transport model.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , India , Tiempo (Meteorología) , Contaminación del Aire/análisis , Material Particulado/análisis
4.
Toxics ; 10(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36355944

RESUMEN

The spread of the COVID-19 pandemic forced the administration to lock down in many countries globally to stop the spread. As the lockdown phase had only the emergency use of transportation and most of the industries were shut down, there was an apparent reduction in pollution. With the end of the lockdown period, pollution is returning to its regular emission in most places. Though the background was abnormally low in emissions (during the lockdown phase) and the reduced pollution changed the radiation balance in the northern hemispheric summer period, a modified pollution pattern is possible during the unlock phases of 2020. The present study analysed the unlock 1 and 2 stages (June-July) of the COVID-19 lockdown over India. The rainfall, surface temperature and cloud cover anomalies of 2020 for understanding the differences in pollutants variation were also analysed. The unlock phases show remarkable differences in trends and mean variations of pollutants over the Indian region compared to climatological variations. The results indicated changing high-emission regions over India to climatological variations and identified an AOD dipole with future emissions over India.

5.
Pure Appl Geophys ; 179(4): 1403-1419, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250099

RESUMEN

The association between aerosol and lightning has been investigated with long-term decadal data (2005-2014) for lightning, aerosol optical depth (AOD), relative humidity, and effective cloud droplet size. To understand the complex relationship between aerosol and lightning, two different regions with different climatic and weather conditions, a humid region R1 (22°-29° N, 89°-92° E) and an arid region R2 (23°-28° N, 70°-76° E) of northern India, were chosen for the study domain. The results show that lightning activity was observed to occur more over the humid region R1, i.e., 1141 days (1/3 of total days), than over the arid region R2, i.e., 740 days (1/5 of total days). Also, over the humid region R1, the highest lightning flash density was recorded as nearly 4.6 × 10-4 flashes/km2/day observed for 18 days (1.5%); on the contrary, over the arid region R2, the maximum lightning flash density was observed to be 2.5 × 10-4 flashes/km2/day and occurred for about 22 days (2.9%). The analysis shows that a nonlinear relationship exists between aerosol and lightning with a highly associated influence of relative humidity. A very significant positive and negative co-relation that varies with relative humidity has been observed between AOD and lightning for both humid and arid regions. This shows relative humidity is the key factor in determining the increase or decrease of lightning activity. This study also shows that the larger the cloud droplet size, the higher the relative humidity and vice versa. This study emphasizes that aerosol concentration in the atmosphere influences cloud microphysics by modulating the size of cloud droplets and thereby regulating the lightning frequency. The atmospheric humidity is the driving factor in deciding the positive or negative co-relationship between aerosol and lightning. Supplementary Information: The online version contains supplementary material available at 10.1007/s00024-022-02981-6.

7.
Chemosphere ; 289: 133155, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34875290

RESUMEN

The Indo-Gangetic Plain (IGP) has high wintertime fine aerosol loadings that significantly modulate the widespread fog formation and sustenance. Here, we investigate the potential formation of secondary inorganic aerosol driven by excess ammonia during winter fog. Physicochemical properties of fine aerosols (PM1 and PM2.5) and trace gases (HCl, HONO, HNO3, SO2, and NH3) were simultaneously monitored at hourly resolution using Monitor for AeRosols and Gases in Ambient air (MARGA-2S) for the first time in India. Results showed that four major ions, i.e., Cl-, NO3-, SO42-, and NH4+ contributed approximately 97% of the total measured inorganic ionic mass. The atmosphere was ammonia-rich in winter and ammonium was the dominant neutralizer with aerosol neutralization ratio (ANR) close to unity. The correlation between ammonium and chloride was ≥0.8, implying the significant formation of ammonium chloride during fog in Delhi. Thermodynamical model ISORROPIA-II showed the predicted PM1 and PM2.5 pH to be 4.49 ± 0.53, and 4.58 ± 0.48 respectively which were in good agreement with measurements. The ALWC increased from non-foggy to foggy periods and a considerable fraction of fine aerosol mass existed in the supermicron size range of 1-2.5 µm. The sulfur oxidation ratio (SOR) of PM1, PM2.5 reached up to 0.60, 0.75 in dense fog and 0.74, 0.87 when ambient RH crossed a threshold of 95%, much higher than non-foggy periods (with confidence level of ≥95%) pointing to enhanced formation of secondary aerosol in fog.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Amoníaco , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año
8.
Bull Environ Contam Toxicol ; 107(5): 938-945, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34519835

RESUMEN

In the present study wheat (Triticum aestivum) cultivar HD 2967 was exposed to ambient and elevated levels of O3 and PM deposition, with and without exogenous application of ascorbic acid (AA). Cultivar HD 2967 exposed to eight treatments in free air O3 enrichment facility and the assessed results showed that wheat cultivar, growth, biochemical, physiological and yield attributes were variably but adversely affected by combined exposure to O3 and PM deposition. PM deposition clogged stomata and enhanced leaf temperature. However, plants exposed to O3 and PM deposition and treated with AA exhibited less reduction in yield as compared to plants exposed to O3 and PM deposition without AA treatment. The decline in grain yield of HD 2967 due to combined exposure of O3 and PM deposition were in the range of 4%-17%. AA spray partially mitigated ozone and PM deposition adverse impact and enhanced wheat yield by 16%.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Contaminantes Atmosféricos/toxicidad , Ácido Ascórbico , Ozono/toxicidad , Material Particulado/toxicidad , Fotosíntesis , Hojas de la Planta , Triticum
9.
Sci Total Environ ; 801: 149711, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34438157

RESUMEN

During wintertime, the Indo-Gangetic Plain suffers from severe air pollution affecting several hundred million people. Here we present unprecedented measurements and source analyses of 52 NMHCs (25 alkanes, 16 aromatics, 10 alkenes and one alkyne) in the cities of Delhi and Mohali (300 km north of Delhi) during wintertime (Dec 2016-Jan 2017). NMHCs were measured using a thermal desorption gas chromatograph equipped with flame ionisation detectors with data traceable to WMO standards. The ten most abundant NMHCs that were measured were the same at both Delhi and Mohali: propane, n-butane, acetylene, ethane, toluene, i-butane, ethene, i-pentane, benzene and propene and accounted for >50% of total measured NMHC mass concentration (137 ± 5.8 µg m-3 in Mohali and 239 ± 7.7 µg m-3 in Delhi). Ambient NMHCs and calculated hydroxyl radical reactivity were approximately twice as high in Delhi relative to Mohali, and 2-12 times higher than most other mega-cities, except Lahore and Karachi. Using chemical source signatures, traffic and LPG usage emissions were identified as the major contributor of these reactive NMHCs at both sites during nighttime, with additional minor contributions of garbage burning in Mohali, and evaporative fuel and biomass burning emissions in Delhi. Comparison of NMHC/CO and NMHC/C2H2 ratios over Mohali and Delhi, to other cities, suggested gasoline/petrol-fuelled vehicles were major NMHC emitters within the traffic source. The data from both Mohali and Delhi suggest that a large fraction of the fleet comprised vehicles with older emission control in both Mohali and Delhi. Analyses revealed poor representation of propene, ethene and trimethylbenzenes in the emission inventory (EDGARv4.3.2) over Mohali and Delhi. This study provides key data and new insights into the sources of reactive NMHCs (lifetime < few days) that drive regional wintertime pollution through direct effects and the formation of secondary pollutants.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Humanos , Hidrocarburos/análisis , India , Emisiones de Vehículos/análisis
10.
Sci Rep ; 11(1): 4104, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33603003

RESUMEN

This study reports a very high-resolution (400 m grid-spacing) operational air quality forecasting system developed to alert residents of Delhi and the National Capital Region (NCR) about forthcoming acute air pollution episodes. Such a high-resolution system has been developed for the first time and is evaluated during October 2019-February 2020. The system assimilates near real-time aerosol observations from in situ and space-borne platform in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to produce a 72-h forecast daily in a dynamical downscaling framework. The assimilation of aerosol optical depth and surface PM2.5 observations improves the initial condition for surface PM2.5 by about 45 µg/m3 (about 50%).The accuracy of the forecast degrades slightly with lead time as mean bias increase from + 2.5 µg/m3 on the first day to - 17 µg/m3 on the third day of forecast. Our forecast is found to be very skillful both for PM2.5 concentration and unhealthy/ very unhealthy air quality index categories, and has been helping the decision-makers in Delhi make informed decisions.

11.
Environ Pollut ; 265(Pt A): 115019, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32585399

RESUMEN

The effect of relative humidity and temperature on the submicron aerosol variability and its ageing process was studied over a high altitude site, Mahabaleshwar in south-west India. The mass composition of non-refractory particulate matter of 1 µm (NR-PM1) size was obtained using Time of Flight Aerosol Chemical Speciation Monitor (ToF-ACSM) along with the measurements on a few trace gases during winter (December 2017-February 2018) and summer season (20th March - 5th May 2018). Sulfate exhibited strong dependence on the relative humidity (RH) as its mass fraction increased with the increase in RH. The Sulfate oxidation ratio (SOR) calculated during summer season also showed an increasing trend with RH indicating the influence of aqueous phase oxidation on sulfate fraction. On the other hand, OOA showed remarkable enhancement in its mass fraction with the increase in temperature along with the corresponding increase in f44 and tropospheric ozone. OOA, ozone and f44 ratio increased 14-34%, 8-26% and 25-43% respectively with the increase in temperature from 18 to 30 °C. This is indicative of the dominance of photochemical ageing processes during high temperature conditions. The extent of photochemical ageing was found to be higher during summer season (mean temperature ∼25.4 ± 2.6 °C) as compared to winter season (mean temperature ∼20.5 ± 2.6 °C). The nitrate diurnal was majorly governed by gas to particle partitioning process during winter season, whereas the summertime nitrate diurnal was influenced primarily by its formation rate. The non parametric wind regression analysis revealed that the mass concentration during winter was majorly contributed by distant sources from north east direction while during summer the local sources were more dominant.


Asunto(s)
Contaminantes Atmosféricos/análisis , Aerosoles/análisis , Altitud , Monitoreo del Ambiente , India , Material Particulado/análisis , Estaciones del Año
12.
Sci Total Environ ; 729: 138800, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32361437

RESUMEN

Water soluble inorganic chemical ions of PM1 and PM2.5 and atmospheric trace gases were monitored simultaneously on hourly resolution at Indira Gandhi International Airport (IGIA), Delhi during 8 December 2017-10 February 2018. Monitoring was made by MARGA (Monitoring AeRosol and Gases in ambient Air) under winter fog experiment (WIFEX) program of the Ministry of Earth Sciences (MoES), Government of India. The result based on the analysis of the data so generated reveals that Cl-, NH4+, NO3- and SO42- were dominant ions in order which collectively constituted 96.8 and 97.3% of the of the total measured ionic mass in PM1 and PM2.5 respectively. Their overall average concentrations in PM1 were 19.5 ± 19.7, 18.4 ± 10.5, 16.6 ± 8.7 and 10.3 ± 5.7 µg/m3 and in PM2.5 were 36.0 ± 33.9, 32.7 ± 17.2, 28.5 ± 13.6 and 19.9 ± 13.9 µg/m3. Average concentrations of HCl, HNO3, HNO2, SO2 and NH3 trace gases were 0.7 ± 0.3, 2.7 ± 1.1, 6.6 ± 4.7, 22.0 ± 12.3 and 25.7 ± 9.1 µg/m3 respectively. Weather parameters along with low mixing height played significant role in the occurrence of high concentration of these chemical species. NH4+ was the prime neutralizer of the acidic components and mostly occurred in (NH4)2SO4/NH4HSO4, NH4NO3 and NH4Cl molecular forms. Major sources of these chemical species were fossil fuel combustion in aviation activity and transportation, coal burning in thermal power plants, industrial processes and emissions from biomass burning and agro-based activity. The quality of air with respect to PM2.5 always remained deteriorated. It became alarming during low visibility period mainly due to high concentration of Cl-, NO3-, SO42- and NH4+. Both meteorological and chemical processes interactively fed each other which occasionally resulted in fog development and visibility degradation. The knowledge gained by this study will help in simulation of atmospheric processes which lead to fog development and dispersal in the Delhi region.

13.
Environ Sci Technol ; 54(8): 4790-4799, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32189491

RESUMEN

Elevated PM2.5 concentrations frequently cause severe air pollution events in Delhi. Till recently, the effect of crop residue burning on the air quality in Delhi has not been fully quantified and the approaches to control the impact of fire emissions have not been effective. In this study, for the first time, we quantified the statewise contribution of post-monsoon crop residue burning in the northwestern states of India to surface PM2.5 concentrations in Delhi using several sensitivity experiments with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and FINNv1.5 fire emission inventory. Results were evaluated with ground-based observations in Delhi (21 stations), Punjab, and Haryana (14 stations). On average, ∼20% of PM2.5 concentration in Delhi during the post-monsoon season (October-November) was found to be contributed by nonlocal fire emissions. However, on typical air pollution events, fire emissions contributed as high as 50-75% (80-120 µg/m3) to PM2.5 in Delhi, highlighting the importance of both external transport and local emissions to PM2.5 pollution in Delhi.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , India , Material Particulado/análisis
14.
Sci Total Environ ; 689: 295-304, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31276997

RESUMEN

We report the first ambient measurements of thirteen VOCs for investigations of emissions and air quality during fog and non-fog wintertime conditions at a tower site (28.57° N, 77.11° E, 220 m amsl) in the megacity of Delhi. Measurements of acetonitrile (biomass burning (BB) tracer), isoprene (biogenic emission tracer in daytime), toluene (a traffic exhaust tracer) and benzene (emitted from BB and traffic), together with soluble and reactive oxygenated VOCs such as methanol, acetone and acetaldehyde were performed during the winters of 2015-16 and 2016-17, using proton transfer reaction mass spectrometry. Remarkably, ambient VOC composition changes during fog were not governed by solubility. Acetaldehyde, toluene, sum of C8-aromatics (e.g. xylenes), sum of C9-aromatics (e.g. trimethyl benzenes) decreased by ≥30% (>95% confidence interval), whereas acetonitrile and benzene showed significant increases by 20% (>70% confidence interval), even after accounting for boundary layer dilution. During fog, the lower temperatures appeared to induce an emissions feedback from enhanced open BB within Delhi for warming, releasing both gaseous and aerosol pollutants with consequences for fog chemistry, sustenance and intensity. The potential feedback is important to consider for improving current emission parametrizations in models used for predicting air quality and fog in such atmospheric environments.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Incendios , Compuestos Orgánicos Volátiles/análisis , Biomasa , Ciudades , India , Estaciones del Año , Tiempo (Meteorología)
15.
Sci Total Environ ; 662: 687-696, 2019 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-30703726

RESUMEN

Data on mass concentration of PM2.5 and its carbonaceous and water soluble inorganic chemical ions were compiled through sampling of PM2.5 at Indira Gandhi International Airport, Delhi during Dec. 16, 2015-Feb. 15, 2016 under Winter Fog Experiment (WIFEX) program of the Ministry of Earth Sciences (MoES) and analysing the samples. The data so generated were interpreted in terms of their variation on different time scales and apportioning their sources. It is found that mass concentration of PM2.5 averaged over the whole period of observation was 198.6±55.6. The concentration of organic carbon (OC) and elemental carbon (EC) was 24.7±9.4 and 11.7±4.7µg/m3 respectively with no any trend of increase or decrease over the observational period. SO42-, Cl- and NO3- dominated over other anions with their overall average concentration 34.0±23.1, 32.7±16.1 and 13.3±8.7µg/m3 respectively. Among cations, NH4+ showed highest concentration with an average value of 21.0±10.6µg/m3. Variation of daily average mass concentration of these parameters over the period of observation matched well with the variation of PM2.5 mass concentration indicating thereby to be the major contributors to the PM2.5 mass. NH4+ mostly occurred as NH4Cl and NH4NO3 and poorly as (NH4)2SO4 or NH4HSO4. H+ ion mostly occurred as H2SO4 and occasionally as HNO3. Carbonaceous aerosols and NO3- were mainly generated from fossil-fuel combustion. NH4+ and anthropogenic Cl- were mostly generated by biomass burning. The source of SO42- was found to be industries and thermal power plants. Continental Ca2+ and Mg2+ originated from thermal power plants and soil dust.

16.
J Environ Sci (China) ; 43: 265-272, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27155433

RESUMEN

A network of air quality and weather monitoring stations was established under the System of Air Quality Forecasting and Research (SAFAR) project in Delhi. We report observations of ozone (O3), nitrogen oxides (NOx), carbon monoxide (CO) and particulate matter (PM2.5 and PM10) before, during and after the Diwali in two consecutive years, i.e., November 2010 and October 2011. The Diwali days are characterised by large firework displays throughout India. The observations show that the background concentrations of particulate matter are between 5 and 10 times the permissible limits in Europe and the United States. During the Diwali-2010, the highest observed PM10 and PM2.5 mass concentration is as high as 2070µg/m3 and 1620µg/m(3), respectively (24hr mean), which was about 20 and 27 times to National Ambient Air Quality Standards (NAAQS). For Diwali-2011, the increase in PM10 and PM2.5 mass concentrations was much less with their peaks of 600 and of 390µg/m(3) respectively, as compared to the background concentrations. Contrary to previous reports, firework display was not found to strongly influence the NOx, and O3 mixing ratios, with the increase within the observed variability in the background. CO mixing ratios showed an increase. We show that the large difference in 2010 and 2011 pollutant concentrations is controlled by weather parameters.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Vacaciones y Feriados , Contaminación del Aire/estadística & datos numéricos , Monóxido de Carbono/análisis , India , Óxidos de Nitrógeno/análisis , Material Particulado/análisis
17.
Inhal Toxicol ; 25(6): 333-40, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23742110

RESUMEN

During the "Commonwealth Games" 2010 (CWG-2010) in Delhi, the Indian government has implemented an ambitious project "System of Air quality Forecasting And Research (SAFAR)" for monitoring and forecasting air-quality scenario. Using high-precision spatio-temporal measurements of criteria pollutants from the SAFAR network, the number of cases are estimated for total, cardiovascular and respiratory mortalities and hospital admissions. In a thinly populated airport area, the excess number of cases for total mortality show ∼10 for PM2.5 and 25 for PM10, whereas, ∼110 for PM2.5 and ∼300 for PM10 in most populous Delhi University (DU) area. Cardiovascular mortality in airport area show ∼5 and <10 for PM2.5 and PM10, respectively, but, in DU area show ∼55 for PM2.5 and ∼140 for PM10. In DU locality, respiratory mortality shows ∼7 and ∼20 for PM2.5 and PM10 and, hospital admissions show ∼11 and ∼30 for PM2.5 and PM10, respectively. In airport area, excess cases of respiratory mortality and hospital admission tends to one for exposure to PM2.5 or PM10 levels indicating effective exposure is the key factor for health hazards. As public health gains, low air pollution levels were observed before the CWG due to effective washout by monsoonal rain and during CWG under policy-induced air quality measures could increase the life expectancy as against to post-CWG period. These results are important for the megacities in developing world as the SAFAR project is internationally recognized by the Global Urban Research Meteorology and Environment of the World Meteorological Organization.


Asunto(s)
Contaminantes Atmosféricos/análisis , Enfermedades Cardiovasculares/mortalidad , Hospitalización/estadística & datos numéricos , Material Particulado/análisis , Enfermedades Respiratorias/mortalidad , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Humanos , India/epidemiología
18.
Chemosphere ; 92(1): 116-24, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23561573

RESUMEN

Indian government has implemented a state of art project "System of Air quality Forecasting And Research (SAFAR)" for assessing the air-quality scenario in Delhi during "Commonwealth Games-2010" which is operational in Delhi. Using a high resolution data of the SAFAR network, we estimate the excess numbers of cases for total, cardiovascular and respiratory mortalities and hospital admissions with the air-quality response to population attributable-risks due to emissions from fireworks displays (Deepavali-2010). The ratios of numbers of excess cases for fireworks displays (Deepavali) to those of non-Deepavali period (CWG-2010) vary from 1.75 to 3.5 for PM(2.5) and from 3 to 8 for PM(10) at monitoring stations in study area except in an airport. These ratios approach to 1 for PM(2.5) or PM(10) in airport area which can be attributed to restrictions on fireworks displays and eventually a very low population exposure. The numbers of excess cases for PM(2.5) and PM(10) during extreme emissions by fireworks displays are about 2-fold to those of non-Deepavali period. The SAFAR is recognized by the Global Urban Research Meteorology and Environment of the World Meteorological Organization and thus results would likely to provide episodic limits for developing countries in common line with the air-quality standards set for developed world for pollutant levels due to emissions from the fireworks displays when population of country celebrates traditional festivals collectively.


Asunto(s)
Contaminantes Atmosféricos/química , Monitoreo del Ambiente , Material Particulado/química , Contaminantes Atmosféricos/toxicidad , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/mortalidad , Exposición a Riesgos Ambientales , Hospitalización , Humanos , India , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/mortalidad , Ozono/análisis , Material Particulado/toxicidad , Factores de Riesgo , Estaciones del Año
19.
Environ Sci Pollut Res Int ; 18(8): 1442-55, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21494819

RESUMEN

BACKGROUND, AIM, AND SCOPE: The present study is an attempt to examine some of the probable causes of the unusually low tropospheric column ozone observed over eastern India during the exceptional drought event in July 2002. METHOD: We examined horizontal wind and omega (vertical velocity) anomalies over the Indian region to understand the large-scale dynamical processes which prevailed in July 2002. We also examined anomalies in tropospheric carbon monoxide (CO), an important ozone precursor, and observed low CO mixing ratio in the free troposphere in 2002 over eastern India. RESULTS AND DISCUSSION: It was found that instead of a normal large-scale ascent, the air was descending in the middle and lower troposphere over a vast part of India. This configuration was apparently responsible for the less convective upwelling of precursors and likely caused less photochemical ozone formation in the free troposphere over eastern India in July 2002. CONCLUSION: The insight gained from this case study will hopefully provide a better understanding of the process controlling the distribution of the tropospheric ozone over the Indian region.


Asunto(s)
Movimientos del Aire , Contaminantes Atmosféricos/análisis , Atmósfera/química , Sequías , Monitoreo del Ambiente , Ozono/análisis , Geografía , India
20.
Environ Sci Pollut Res Int ; 18(2): 301-15, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20652426

RESUMEN

Vertical profiles of carbon monoxide (CO) and ozone retrieved from Tropospheric Emission Spectrometer have been analyzed during two super cyclone systems Mala and Sidr. Super cyclones Mala and Sidr traversed the Bay of Bengal (BOB) region on April 24-29, 2006 and November 12-16, 2007 respectively. The CO and ozone plume is observed as a strong enhancement of these pollutants in the upper troposphere over the BOB, indicating deep convective transport. Longitude-height cross-section of these pollutants shows vertical transport to the upper troposphere. CO mixing ratio ~90 ppb is observed near the 146-mb level during the cyclone Mala and near 316 mb during the cyclone Sidr. Ozone mixing ratio ~60-100 ppb is observed near the 316-mb level during both the cyclones. Analysis of National Centers for Environmental Prediction (NCEP) reanalysis vertical winds (omega) confirms vertical transport in the BOB.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monóxido de Carbono/análisis , Tormentas Ciclónicas , Meteorología/métodos , Ozono/análisis , Análisis Espectral/instrumentación , Asia Sudoriental , Atmósfera/química , Simulación por Computador , Bases de Datos Factuales , Monitoreo del Ambiente/métodos , India , Océano Índico , Modelos Químicos , Comunicaciones por Satélite , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...