Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cells ; 29(12): 2051-61, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22009661

RESUMEN

Human heart harbors a population of resident progenitor cells that can be isolated by stem cell antigen-1 antibody and expanded in culture. These cells can differentiate into cardiomyocytes in vitro and contribute to cardiac regeneration in vivo. However, when directly injected as single cell suspension, less than 1%-5% survive and differentiate. Among the major causes of this failure are the distressing protocols used to culture in vitro and implant progenitor cells into damaged hearts. Human cardiac progenitors obtained from the auricles of patients were cultured as scaffoldless engineered tissues fabricated using temperature-responsive surfaces. In the engineered tissue, progenitor cells established proper three-dimensional intercellular relationships and were embedded in self-produced extracellular matrix preserving their phenotype and multipotency in the absence of significant apoptosis. After engineered tissues were leant on visceral pericardium, a number of cells migrated into the murine myocardium and in the vascular walls, where they integrated in the respective textures. The study demonstrates the suitability of such an approach to deliver stem cells to the myocardium. Interestingly, the successful delivery of cells in murine healthy hearts suggests that myocardium displays a continued cell cupidity that is strictly regulated by the limited release of progenitor cells by the adopted source. When an unregulated cell source is added to the system, cells are delivered to the myocardium. The exploitation of this novel concept may pave the way to the setup of new protocols in cardiac cell therapy.


Asunto(s)
Ventrículos Cardíacos/trasplante , Miocardio/metabolismo , Miocitos Cardíacos/citología , Células Madre/citología , Ingeniería de Tejidos/métodos , Anciano , Anciano de 80 o más Años , Animales , Diferenciación Celular , Movimiento Celular , Técnicas de Cocultivo , Femenino , Perfilación de la Expresión Génica , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miocardio/citología , Miocitos Cardíacos/fisiología , Miocitos Cardíacos/trasplante , Fenotipo , Trasplante de Tejidos/métodos
2.
Endocr Dev ; 14: 29-37, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19293573

RESUMEN

In the last decade, dramatic progress has been made in elucidating the molecular defects underlying a number of muscle diseases. With the characterization of mutations responsible for muscle dysfunction in several inherited pathologies, and the identification of novel signaling pathways, subtle alterations in which can lead to significant defects in muscle metabolism, the field is poised to devise successful strategies for treatment of this debilitating and often fatal group of human ailments. Yet progress has been slow in therapeutic applications of our newly gained knowledge. The complexity of muscle types, the intimate relationship between structural integrity and mechanical function, and the sensitivity of skeletal muscle to metabolic perturbations have impeded rapid progress in successful clinical intervention. The relatively poor regenerative properties of striated muscle compound the devastating effects of muscle degeneration. Perhaps the most difficult hurdle is the sheer volume of tissue that must be treated to effect a significant improvement in quality of life. Recent studies on the role of insulin-like growth factor-1 in skeletal muscle growth and homeostasis have excited new interest in this important mediator of anabolic pathways and suggest promising new avenues for intervention in catabolic disease. In this review, we will discuss the potential therapeutic role of local insulin-like growth factor 1 in the treatment of muscle wasting associated with muscle diseases.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares , Transducción de Señal/fisiología , Humanos , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Enfermedades Musculares/terapia
3.
J Cell Physiol ; 216(3): 576-82, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18546201

RESUMEN

Adult skeletal muscle contains a specialized population of myogenic quiescent stem cells, termed satellite cells, which contribute to repair myofibers after injury. During muscle regeneration, satellite cells exit their normal quiescent state, proliferate, activating MyoD and Myf-5 expression, and finally differentiate and fuse to reconstitute the injured muscle architecture. We have previously reported that cdk9 is required for myogenesis in vitro by activating MyoD-dependent transcription. In myoblasts induced to differentiate, MyoD recruits cdk9 on the chromatin of muscle-specific regulatory regions. This event correlates with chromatin-modifying enzyme recruitment and phosphorylation of cdk9-specific target residues at the carboxyl-terminal domain of RNA polymerase II. Here we report that a second cdk9 isoform, termed cdk9-55, plays a fundamental role in muscle regeneration and differentiation in vivo. This alternative form is specifically induced in injured myofibers and its activity is strictly required for the completion of muscle regeneration process.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético , Isoformas de Proteínas/metabolismo , Regeneración/fisiología , Células Madre/fisiología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Quinasa 9 Dependiente de la Ciclina/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/citología , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Proteína MioD/genética , Proteína MioD/metabolismo , Isoformas de Proteínas/genética , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Células Madre/citología
4.
FASEB J ; 21(7): 1393-402, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17264161

RESUMEN

Muscle regeneration following injury is characterized by myonecrosis accompanied by local inflammation, activation of satellite cells, and repair of injured fibers. The resolution of the inflammatory response is necessary to proceed toward muscle repair, since persistence of inflammation often renders the damaged muscle incapable of sustaining efficient muscle regeneration. Here, we show that local expression of a muscle-restricted insulin-like growth factor (IGF)-1 (mIGF-1) transgene accelerates the regenerative process of injured skeletal muscle, modulating the inflammatory response, and limiting fibrosis. At the molecular level, mIGF-1 expression significantly down-regulated proinflammatory cytokines, such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta, and modulated the expression of CC chemokines involved in the recruitment of monocytes/macrophages. Analysis of the underlying molecular mechanisms revealed that mIGF-1 expression modulated key players of inflammatory response, such as macrophage migration inhibitory factor (MIF), high mobility group protein-1 (HMGB1), and transcription NF-kappaB. The rapid restoration of injured mIGF-1 transgenic muscle was also associated with connective tissue remodeling and a rapid recovery of functional properties. By modulating the inflammatory response and reducing fibrosis, supplemental mIGF-1 creates a qualitatively different environment for sustaining more efficient muscle regeneration and repair.


Asunto(s)
Quimiocinas/metabolismo , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Factor I del Crecimiento Similar a la Insulina/fisiología , Músculo Esquelético/fisiología , Regeneración , Animales , Secuencia de Bases , Técnica del Anticuerpo Fluorescente , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
J Cell Biochem ; 99(3): 978-85, 2006 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16741970

RESUMEN

Cyclin-dependent kinases (cdks) are the catalytic subunits of a large family of serine/threonine protein kinases whose best-characterized members are key regulators of eukaryotic cell cycle progression. They are activated by binding to regulatory subunits generally termed as cyclins. Cdk10 is a cdc2-related kinase that contains the canonical regulatory Tyr and Thr residues present in all protein kinases and a PSTAIRE-like motif named PISSLRE. Although little is known about this protein, human cdk10 has been shown to encode two different isoforms, each having a distinct function. They differ at both the carboxy- and amino-terminals, although most of the amino acid sequence is predicted to be identical for the two isoforms. A role at the G2/M transition has been suggested for an isoform of cdk10, while the alternative splicing form interacts with the N-terminus of the Ets2 transcription factor. Here we report the cloning and the functional characterization of a cDNA encoding the murine homologue of cdk10. Unlike its human counterpart, only one murine cdk10 protein has been identified, and this unique murine cdk10 cDNA encodes a putative protein of 360 amino acids. Comparison of the amino acid sequences of murine and human cdk10 shows high homology. Murine cdk10 binds Ets2 transcription factors in vitro, does not show a direct involvement in the G2/M transition and, therefore, does not affect the proliferation rate of the cell lines analyzed.


Asunto(s)
Ciclo Celular/fisiología , Quinasas Ciclina-Dependientes/metabolismo , Proteína Proto-Oncogénica c-ets-2/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Quinasas Ciclina-Dependientes/genética , Humanos , Ratones , Datos de Secuencia Molecular , Proteína Proto-Oncogénica c-ets-2/genética , Alineación de Secuencia , Distribución Tisular
6.
J Cell Physiol ; 206(3): 807-13, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16245309

RESUMEN

During skeletal myogenesis, muscle-regulatory factors bHLH and MEF2 promote the expression of muscle-specific genes by recruiting several chromatin-modifying complexes on specific DNA regulatory sequences. A number of MyoD-interacting proteins have been reported, but whether they are recruited to the chromatin of myogenic loci, and the relationship with other chromatin bound proteins is unknown. We show that MyoD recruits cdk9/cyclin T2, together with the histone acetyltransferases p300 and PCAF, and the chromatin remodeling complex SWI/SNF, on promoters and enhancers of muscle-specific genes, and that this event correlates with the acetylation of histone tails, remodeling of chromatin, and phosphorylation of the C-terminal domain (CTD) of the RNA polymerase II at these elements.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Ciclinas/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Proteína MioD/fisiología , Miogenina/genética , Secuencias Reguladoras de Ácidos Nucleicos , Transcripción Genética , Animales , Diferenciación Celular , Línea Celular , Cromatina/fisiología , Quinasa 2 Dependiente de la Ciclina/metabolismo , Ratones , Modelos Biológicos , Mioblastos/metabolismo , Factores de Transcripción , Activación Transcripcional
7.
Mol Cancer ; 4: 41, 2005 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-16351709

RESUMEN

BACKGROUND: p21WAF1, implicated in the cell cycle control of both normal and malignant cells, can be induced by p53-dependent and independent mechanisms. In some cells, MEKs/ERKs regulate p21WAF1 transcriptionally, while in others they also affect the post-transcriptional processes. In myogenic differentiation, p21WAF1 expression is also controlled by the myogenic transcription factor MyoD. We have previously demonstrated that the embryonal rhabdomyosarcoma cell line undergoes growth arrest and myogenic differentiation following treatments with TPA and the MEK inhibitor U0126, which respectively activate and inhibit the ERK pathway. In this paper we attempt to clarify the mechanism of ERK-mediated and ERK-independent growth arrest and myogenic differentiation of embryonal and alveolar rhabdomyosarcoma cell lines, particularly as regards the expression of the cell cycle inhibitor p21WAF1. RESULTS: p21WAF1 expression and growth arrest are induced in both embryonal (RD) and alveolar (RH30) rhabdomyosarcoma cell lines following TPA or MEK/ERK inhibitor (U0126) treatments, whereas myogenic differentiation is induced in RD cells alone. Furthermore, the TPA-mediated post-transcriptional mechanism of p21WAF1-enhanced expression in RD cells is due to activation of the MEK/ERK pathway, as shown by transfections with constitutively active MEK1 or MEK2, which induces p21WAF1 expression, and with ERK1 and ERK2 siRNA, which prevents p21WAF1 expression. By contrast, U0126-mediated p21WAF1 expression is controlled transcriptionally by the p38 pathway. Similarly, myogenin and MyoD expression is induced both by U0126 and TPA and is prevented by p38 inhibition. Although MyoD and myogenin depletion by siRNA prevents U0126-mediated p21WAF1 expression, the over-expression of these two transcription factors is insufficient to induce p21WAF1. These data suggest that the transcriptional mechanism of p21WAF1 expression in RD cells is rescued when MEK/ERK inhibition relieves the functions of myogenic transcription factors. Notably, the forced expression of p21WAF1 in RD cells causes growth arrest and the reversion of anchorage-independent growth. CONCLUSION: Our data provide evidence of the key role played by the MEK/ERK pathway in the growth arrest of Rhabdomyosarcoma cells. The results of this study suggest that the targeting of MEK/ERKs to rescue p21WAF1 expression and myogenic transcription factor functions leads to the reversal of the Rhabdomyosarcoma phenotype.


Asunto(s)
Diferenciación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Biomarcadores , Butadienos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Proteína MioD/genética , Miogenina/genética , Nitrilos/farmacología , Fenotipo , Rabdomiosarcoma/irrigación sanguínea , Rabdomiosarcoma/embriología , Acetato de Tetradecanoilforbol/farmacología , Transcripción Genética/genética , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
J Cell Biol ; 168(2): 193-9, 2005 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-15657392

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by a selective degeneration of motor neurons, atrophy, and paralysis of skeletal muscle. Although a significant proportion of familial ALS results from a toxic gain of function associated with dominant SOD1 mutations, the etiology of the disease and its specific cellular origins have remained difficult to define. Here, we show that muscle-restricted expression of a localized insulin-like growth factor (Igf) -1 isoform maintained muscle integrity and enhanced satellite cell activity in SOD1(G93A) transgenic mice, inducing calcineurin-mediated regenerative pathways. Muscle-specific expression of local Igf-1 (mIgf-1) isoform also stabilized neuromuscular junctions, reduced inflammation in the spinal cord, and enhanced motor neuronal survival in SOD1(G93A) mice, delaying the onset and progression of the disease. These studies establish skeletal muscle as a primary target for the dominant action of inherited SOD1 mutation and suggest that muscle fibers provide appropriate factors, such as mIgf-1, for neuron survival.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Factor I del Crecimiento Similar a la Insulina/fisiología , Neuronas Motoras/metabolismo , Músculo Esquelético/metabolismo , Agrina/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/mortalidad , Animales , Astrocitos/metabolismo , Northern Blotting , Western Blotting , Calcineurina/genética , Calcineurina/metabolismo , Sistema Nervioso Central/química , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Desmina/metabolismo , Modelos Animales de Enfermedad , Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Inmunohistoquímica , Factor I del Crecimiento Similar a la Insulina/genética , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Fibras Musculares Esqueléticas/citología , Músculo Esquelético/química , Músculo Esquelético/patología , Cadenas Pesadas de Miosina/metabolismo , Unión Neuromuscular/metabolismo , Factor de Transcripción PAX7 , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Células Satélite del Músculo Esquelético/química , Células Satélite del Músculo Esquelético/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Tasa de Supervivencia , Factor de Necrosis Tumoral alfa/metabolismo , Caminata
9.
Proc Natl Acad Sci U S A ; 101(5): 1206-10, 2004 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-14745025

RESUMEN

We investigated the mechanism whereby expression of a transgene encoding a locally acting isoform of insulin-like growth factor 1 (mIGF-1) enhances repair of skeletal muscle damage. Increased recruitment of proliferating bone marrow cells to injured MLC/mIgf-1 transgenic muscles was accompanied by elevated bone marrow stem cell production in response to distal trauma. Regenerating MLC/mIgf-1 transgenic muscles contained increased cell populations expressing stem cell markers, exhibited accelerated myogenic differentiation, expressed markers of regeneration and readily converted cocultured bone marrow to muscle. These data implicate mIGF-1 as a powerful enhancer of the regeneration response, mediating the recruitment of bone marrow cells to sites of tissue damage and augmenting local repair mechanisms.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/fisiología , Músculos/fisiología , Regeneración/fisiología , Células Madre/fisiología , Animales , Células de la Médula Ósea/fisiología , Antígeno CD11b/análisis , Movimiento Celular , Antígenos Comunes de Leucocito/análisis , Ratones , Ratones Transgénicos , Isoformas de Proteínas
10.
Am J Pathol ; 163(4): 1417-28, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14507649

RESUMEN

Vascular endothelial growth factor (VEGF) expression is enhanced in ischemic skeletal muscle and is thought to play a key role in the angiogenic response to ischemia. However, it is still unknown whether, in addition to new blood vessel growth, VEGF modulates skeletal muscle cell function. In the present study immunohistochemical analysis showed that, in normoperfused mouse hindlimb, VEGF and its receptors Flk-1 and Flt-1 were expressed mostly in quiescent satellite cells. Unilateral hindlimb ischemia was induced by left femoral artery ligation. At day 3 and day 7 after the induction of ischemia, Flk-1 and Flt-1 were expressed in regenerating muscle fibers and VEGF expression by these fibers was markedly enhanced. Additional in vitro experiments showed that in growing medium both cultured satellite cells and myoblast cell line C2C12 expressed VEGF and its receptors. Under these conditions, Flk-1 receptor exhibited constitutive tyrosine phosphorylation that was increased by VEGF treatment. During myogenic differentiation Flk-1 and Flt-1 were down-regulated. In a modified Boyden Chamber assay, VEGF enhanced C2C12 myoblasts migration approximately fivefold. Moreover, VEGF administration to differentiating C2C12 myoblasts prevented apoptosis, while inhibition of VEGF signaling either with selective VEGF receptor inhibitors (SU1498 and CB676475) or a neutralizing Flk-1 antibody, enhanced cell death approximately 3.5-fold. Finally, adenovirus-mediated VEGF(165) gene transfer inhibited ischemia-induced apoptosis in skeletal muscle. These results support a role for VEGF in myoblast migration and survival, and suggest a novel autocrine role of VEGF in skeletal muscle repair during ischemia.


Asunto(s)
Factores de Crecimiento Endotelial/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Linfocinas/fisiología , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Mioblastos/fisiología , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/fisiología , Hipoxia de la Célula/fisiología , Línea Celular , Movimiento Celular/fisiología , Supervivencia Celular/fisiología , Factores de Crecimiento Endotelial/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Técnicas de Transferencia de Gen , Miembro Posterior , Péptidos y Proteínas de Señalización Intercelular/farmacología , Isquemia/fisiopatología , Linfocinas/farmacología , Masculino , Ratones , Ratones Endogámicos , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/fisiopatología , Mioblastos/citología , Cadenas Pesadas de Miosina , Miosina Tipo IIB no Muscular , Regeneración , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Factor A de Crecimiento Endotelial Vascular , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...