Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(26): e2208719, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36932736

RESUMEN

Optical biosensors based on plasmonic sensing schemes combine high sensitivity and selectivity with label-free detection. However, the use of bulky optical components is still hampering the possibility of obtaining miniaturized systems required for analysis in real settings. Here, a fully miniaturized optical biosensor prototype based on plasmonic detection is demonstrated, which enables fast and multiplex sensing of analytes with high- and low molecular weight (80 000 and 582 Da) as quality and safety parameters for milk: a protein (lactoferrin) and an antibiotic (streptomycin). The optical sensor is based on the smart integration of: i) miniaturized organic optoelectronic devices used as light-emitting and light-sensing elements and ii) a functionalized nanostructured plasmonic grating for highly sensitive and specific localized surface plasmon resonance (SPR) detection. The sensor provides quantitative and linear response reaching a limit of detection of 10-4 refractive index units once it is calibrated by standard solutions. Analyte-specific and rapid (15 min long) immunoassay-based detection is demonstrated for both targets. By using a custom algorithm based on principal-component analysis, a linear dose-response curve is constructed which correlates with a limit of detection (LOD) as low as 3.7 µg mL-1 for lactoferrin, thus assessing that the miniaturized optical biosensor is well-aligned with the chosen reference benchtop SPR method.


Asunto(s)
Técnicas Biosensibles , Lactoferrina , Peso Molecular , Técnicas Biosensibles/métodos , Resonancia por Plasmón de Superficie , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...