Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 630(Pt A): 465-476, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36265347

RESUMEN

For polymersome-based nanoreactor purposes, we herein present the synthesis and characterization of well-defined star amphiphilic copolymers composed of a beta-cyclodextrin (ßCD) core and seven poly(butylene oxide)-block-polyglycidol (PBO-PGL) arms per side (ßCD-(PBO-PGL)14). The self-assembly behavior of 14-armed ßCD-(PBO-PGL)14 and PGL-PBO-PGL (linear analogues without the ßCD segment) was investigated using scattering techniques for comparison. The morphologies, including vesicles and micelles, are governed by the hydrophobic-to-hydrophilic (weight) ratio, regardless of the polymer architecture (linear or star). Interestingly, despite notable differences in polymer conformation, the produced supramolecular structures were evidenced to be fairly similar on the structural point of view. We subsequently investigated the ion permeability of the membranes of the self-assemblies focusing on the impact of the presence of ßCD. The results demonstrated that the ßCD-containing vesicular membranes are less permeable to H+, compared with ßCD-free vesicular membranes. The presence of ßCD in planar membranes also influences the K+Cl- permeability to some extent. Thus, ßCD-containing membranes can be considered as potential candidates in designing nano-containers towards applications where precise changes in environmental pH are required.


Asunto(s)
Polímeros , beta-Ciclodextrinas , Polímeros/química , Micelas , beta-Ciclodextrinas/química , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Molecular
2.
Photochem Photobiol Sci ; 18(5): 1171-1184, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30810155

RESUMEN

In this article, new fluorescent lipophilic based benzazoles were synthesized from the reaction between photoactive formyl derivatives and aliphatic amines followed by NaBH4 reduction with good yields. The photophysics of the benzazoles was investigated experimentally and theoretically. These compounds present absorption maxima in the UV region (∼339 nm) and fluorescence emission maxima in the cyan to green region with a large Stokes shift (∼175 nm) due to a proton transfer process in the excited state. Two fluorophores were successfully used as a proof of concept to produce stable photoactive liposomes prepared from phosphatidylcholine (PC) and were characterized by zeta potential, small angle X-ray scattering (SAXS), FTIR and UV-Vis experiments (turbidity). The scattering data indicate that the presence of compounds 20 and 23 reduces the overall surface charge of the PC vesicles, possibly due to the partial neutralization of phosphatidic acid and/or phosphatidylinositol phosphate by the amine groups, and they also modify the structural features of the assemblies, leading, in particular, to a reduction in the thickness of the hydrophobic inner segment (tt) of the liposomes. DFT and TD-DFT calculations were performed with the ωB97XD functional. Geometric analyses show that the 2-(2'-hydroxyphenyl)benzazolic planar portion allows an effective ππ* electronic transition. Additionally, the calculations indicate a small energy barrier to proton transfer. The results of the absorption and emission maxima show a slight solvent influence on the wavelengths.


Asunto(s)
Aminas , Teoría Funcional de la Densidad , Fluorescencia , Fosfatidilcolinas/química , Protones , Aminas/síntesis química , Aminas/química , Liposomas/síntesis química , Liposomas/química , Estructura Molecular , Procesos Fotoquímicos
3.
J Colloid Interface Sci ; 519: 232-241, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29501995

RESUMEN

Investigations focused on the interactions of nanoparticles with lectins are relevant since it is well accepted that such proteins can be recognized by carbohydrates as parts of cell membranes. This can ultimately enhance the cellular uptake of the produced assemblies. In this framework, the physical interactions of phosphatidylcholine (PC) liposomes and the Bauhinia variegate lectin (BVL) are reported here. BVL-liposome interactions were characterized by a variety of techniques to understand the influence of BVL in the structural features, thermodynamic and spectroscopic properties of the hybrid material. The produced system is composed of 56% w/w lectin, and the scattering techniques show the presence of stable vesicular structures with a mean diameter DH ∼ 100 nm. The FTIR and NMR results showed a strong lectin effect on the PC choline region, restricting the rotational motion of the lipid group. The BVL-liposome interaction promoted hardening of the protein as evidenced by circular dichroism spectroscopy. The photophysics results suggest higher rigidity of the system in the presence of BVL. The BVL may be present in the inner or outer polar surface of the liposomes. The system was shown to be relatively stable and therefore potentially useful for carbohydrate recognition of nanoparticles.


Asunto(s)
Bauhinia/química , Liposomas/química , Nanopartículas/química , Fosfatidilcolinas/química , Lectinas de Plantas/química , Tamaño de la Partícula , Conformación Proteica , Propiedades de Superficie
4.
Colloids Surf B Biointerfaces ; 148: 12-18, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27591566

RESUMEN

This study examined the physicochemical interactions between vesicles formed by phosphatidylcholine (PC) and glycosylated polymeric amphiphile N-acetyl-ß-d-glucosaminyl-PEG900-docosanate (C22PEG900GlcNAc) conjugated with Bauhinia variegata lectin (BVL). Lectins are proteins or glycoproteins capable of binding glycosylated membrane components. Accordingly, the surface functionalization by such entities is considered a potential strategy for targeted drug delivery. We observed increased hydrodynamic radii (RH) of PC+C22PEG900GlcNAc vesicles in the presence of lectins, suggesting that this aggregation was due to the interaction between lectins and the vesicular glycosylated surfaces. Furthermore, changes in the zeta potential of the vesicles with increasing lectin concentrations implied that the vesicular glycosylated surfaces were recognized by the investigated lectin. The presence of carbohydrate residues on vesicle surfaces and the ability of the vesicles to establish specific interactions with BVL were further explored using atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS) analysis. The results indicated that the thickness of the hydrophilic layer was to some extent influenced by the presence of lectins. The presence of lectins required a higher degree of polydispersity as indicated by the width parameter of the log-normal distribution of size, which also suggested more irregular structures. Reflectance Fourier transform infrared (HATR-FTIR), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR) and ultraviolet-visible (UV-vis.) analyses revealed that the studied lectin preferentially interacted with the choline and carbonyl groups of the lipid, thereby changing the choline orientation and intermolecular interactions. The protein also discretely reduced the intermolecular communication of the hydrophobic acyl chains, resulting in a disordered state.


Asunto(s)
Carbohidratos/química , Lectinas/química , Microscopía de Fuerza Atómica , Espectroscopía de Protones por Resonancia Magnética , Dispersión del Ángulo Pequeño , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
5.
Colloids Surf B Biointerfaces ; 133: 323-30, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26123853

RESUMEN

This work describes the synthesis of a new glycosylated conjugate copolymer, GlcNAc-PEO75-PPO30-PEO75-GlcNAc (GlcNAc-PluronicF68-GlcNAc), using click chemistry from Pluronic(®) F68 and propargyl-2-N-acetamido-2-deoxy-ß-D-glucopyranoside. Micelles were prepared by the self-assembly of GlcNAc-PluronicF68-GlcNAc in phosphate-buffered solution. The critical micelle concentration was determined by fluorescence spectroscopy, and the value was found to be equal to 5.8mgmL(-1). The Gibbs free energy (ΔG) of micellization is negative, indicating that the organization of amphiphiles is governed by the hydrophobic effects in an entropy-driven process. The scattering characterization of GlcNAc-PluronicF68-GlcNAc micelles showed a hydrodynamic radius of 8.7nm and negative zeta potential (-21.0±0.9mV). The TEM image evidences the spherical shape of the objects self-assemble into highly regular micelles having a mean diameter of 10nm. The SAXS profile confirmed the spherical shape of the assemblies comprising a swollen PPO core (Rcore=2.25nm) stabilized by PEO chains following Gaussian statistics. The results of the comet assay showed that the GlcNAc-PluronicF68-GlcNAc micelles were not genotoxic, and the cell viability test was higher than 97% for all concentrations, demonstrating that GlcNAc-PluronicF68-GlcNAc is not toxic.


Asunto(s)
Acetilglucosamina/química , Poloxámero/química , Ensayo Cometa , Glicosilación , Humanos , Micelas , Microscopía Electrónica de Transmisión , Dispersión del Ángulo Pequeño , Espectrometría de Fluorescencia , Termodinámica , Difracción de Rayos X
6.
J Colloid Interface Sci ; 397: 114-21, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23465190

RESUMEN

The single-step/single-phase synthesis of hybrid organic-inorganic core-shell gold nanoparticles (AuNPs), facilitated by amino-functionalized amphiphilic block copolymers that simultaneously play the roles of reductant and stabilizer, was investigated in this study. Experiments were devised with emphasis on the pH-responsive poly(ethylene oxide)-b-poly(2,3-dihydroxypropyl methacrylate)-b-poly[2-(diisopropylamino)ethyl methacrylate] triblock copolymer, which allows direct chemical cross-linking of the micellar structures to be performed. The polymer structure-reactivity relationship associated with the AuNP formation was established using a set of six structurally related macromolecules. AuNP formation was dependent on the aqueous dissociation equilibrium involving tertiary amino groups, the Au(III) speciation, and electrochemical redox potentials. The effects of these parameters on the synthesis of AuNPs change as the solution pH is increased from pH 3.3 (molecularly dissolved polymer chains; no AuNP formation) to 6.8 or higher (polymer chains self-assembled into spherical micelles; stable gold sols are produced), and Au(III) reduction potentials shift toward the cathodic region while the oxidation potential of deprotonated amino groups decreases. Sigmoidal nanoparticle growth kinetics was observed in all cases after a characteristic induction period. Stable, well-defined, uniform polymer-coated gold colloids with localized surface plasmon resonance centered at 53 0nm can be conveniently produced in one-pot, two-reactant, no work-up reactions when the stoichiometry is [N]/[Au]=3.5-25.0.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Ácidos Polimetacrílicos/química , Concentración de Iones de Hidrógeno , Nanopartículas del Metal/ultraestructura , Oxidación-Reducción , Relación Estructura-Actividad
7.
J Control Release ; 165(2): 153-61, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23178950

RESUMEN

The preparation of core-shell polymeric nanoparticles simultaneously loaded with docetaxel (DTXL) and doxorubicin (DOX) is reported herein. The self-assembly of the aliphatic biodegradable copolyester PBS/PBDL (poly(butylene succinate-co-butylene dilinoleate)) and HPMA-based copolymers (N-(2-hydroxypropyl)methacrylamide-based copolymers) hydrophobically modified by the incorporation of cholesterol led to the formation of narrow-size-distributed (PDI<0.10) sub-200-nm polymeric nanoparticles suitable for passive tumor-targeting drug delivery based on the size-dependent EPR (enhanced permeability and retention) effect. The PHPMA provided to the self-assembled nanoparticle stability against aggregation as evaluated in vitro. The highly hydrophobic drug docetaxel (DTXL) was physically entrapped within the PBS/PBDL copolyester core and the hydrophilic drug doxorubicin hydrochloride (DOX·HCl) was chemically conjugated to the reactive PHPMA copolymer shell via hydrazone bonding that allowed its pH-sensitive release. This strategy enabled the combination chemotherapy by the simultaneous DOX and DTXL drug delivery. The structure of the nanoparticles was characterized in detail using static (SLS), dynamic (DLS) and electrophoretic (ELS) light scattering besides transmission electron microscopy (TEM). The use of nanoparticles simultaneously loaded with DTXL and DOX provided a more efficient suppression of tumor-cell growth in mice bearing EL-4 T cell lymphoma when compared to the effect of nanoparticles loaded with either DTXL or DOX separately. Additionally, the obtained self-assembled nanoparticles enable further development of targeting strategies based on the use of multiple ligands attached to an HPMA copolymer on the particle surface for simultaneous passive and active targeting and different combination therapies.


Asunto(s)
Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Linfoma de Células T/tratamiento farmacológico , Metacrilatos/química , Nanopartículas/química , Poliésteres/química , Taxoides/administración & dosificación , Animales , Antineoplásicos/uso terapéutico , Docetaxel , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Nanopartículas/ultraestructura , Taxoides/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...