Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 434, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251990

RESUMEN

BACKGROUND: Glioblastoma (GBM) stands as the most prevalent and aggressive form of adult gliomas. Despite the implementation of intensive therapeutic approaches involving surgery, radiation, and chemotherapy, Glioblastoma Stem Cells contribute to tumor recurrence and poor prognosis. The induction of Glioblastoma Stem Cells differentiation by manipulating the transcriptional machinery has emerged as a promising strategy for GBM treatment. Here, we explored an innovative approach by investigating the role of the depolarized resting membrane potential (RMP) observed in patient-derived GBM sphereforming cell (GSCs), which allows them to maintain a stemness profile when they reside in the G0 phase of the cell cycle. METHODS: We conducted molecular biology and electrophysiological experiments, both in vitro and in vivo, to examine the functional expression of the voltage-gated sodium channel (Nav) in GSCs, particularly focusing on its cell cycle-dependent functional expression. Nav activity was pharmacologically manipulated, and its effects on GSCs behavior were assessed by live imaging cell cycle analysis, self-renewal assays, and chemosensitivity assays. Mechanistic insights into the role of Nav in regulating GBM stemness were investigated through pathway analysis in vitro and through tumor proliferation assay in vivo. RESULTS: We demonstrated that Nav is functionally expressed by GSCs mainly during the G0 phase of the cell cycle, suggesting its pivotal role in modulating the RMP. The pharmacological blockade of Nav made GBM cells more susceptible to temozolomide (TMZ), a standard drug for this type of tumor, by inducing cell cycle re-entry from G0 phase to G1/S transition. Additionally, inhibition of Nav substantially influenced the self-renewal and multipotency features of GSCs, concomitantly enhancing their degree of differentiation. Finally, our data suggested that Nav positively regulates GBM stemness by depolarizing the RMP and suppressing the ERK signaling pathway. Of note, in vivo proliferation assessment confirmed the increased susceptibility to TMZ following pharmacological blockade of Nav. CONCLUSIONS: This insight positions Nav as a promising prognostic biomarker and therapeutic target for GBM patients, particularly in conjunction with temozolomide treatment.


Asunto(s)
Diferenciación Celular , Glioblastoma , Células Madre Neoplásicas , Canales de Sodio Activados por Voltaje , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Humanos , Diferenciación Celular/efectos de los fármacos , Canales de Sodio Activados por Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/genética , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Animales , Temozolomida/farmacología , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Proliferación Celular/efectos de los fármacos , Ratones
2.
J Exp Clin Cancer Res ; 43(1): 161, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858661

RESUMEN

BACKGROUND: Cancer-associated fibroblasts (CAFs) play a significant role in fueling prostate cancer (PCa) progression by interacting with tumor cells. A previous gene expression analysis revealed that CAFs up-regulate genes coding for voltage-gated cation channels, as compared to normal prostate fibroblasts (NPFs). In this study, we explored the impact of antiarrhythmic drugs, known cation channel inhibitors, on the activated state of CAFs and their interaction with PCa cells. METHODS: The effect of antiarrhythmic treatment on CAF activated phenotype was assessed in terms of cell morphology and fibroblast activation markers. CAF contractility and migration were evaluated by 3D gel collagen contraction and scratch assays, respectively. The ability of antiarrhythmics to impair CAF-PCa cell interplay was investigated in CAF-PCa cell co-cultures by assessing tumor cell growth and expression of epithelial-to-mesenchymal transition (EMT) markers. The effect on in vivo tumor growth was assessed by subcutaneously injecting PCa cells in SCID mice and intratumorally administering the medium of antiarrhythmic-treated CAFs or in co-injection experiments, where antiarrhythmic-treated CAFs were co-injected with PCa cells. RESULTS: Activated fibroblasts show increased membrane conductance for potassium, sodium and calcium, consistently with the mRNA and protein content analysis. Antiarrhythmics modulate the expression of fibroblast activation markers. Although to a variable extent, these drugs also reduce CAF motility and hinder their ability to remodel the extracellular matrix, for example by reducing MMP-2 release. Furthermore, conditioned medium and co-culture experiments showed that antiarrhythmics can, at least in part, reverse the protumor effects exerted by CAFs on PCa cell growth and plasticity, both in androgen-sensitive and castration-resistant cell lines. Consistently, the transcriptome of antiarrhythmic-treated CAFs resembles that of tumor-suppressive NPFs. In vivo experiments confirmed that the conditioned medium or the direct coinjection of antiarrhythmic-treated CAFs reduced the tumor growth rate of PCa xenografts. CONCLUSIONS: Collectively, such data suggest a new therapeutic strategy for PCa based on the repositioning of antiarrhythmic drugs with the aim of normalizing CAF phenotype and creating a less permissive tumor microenvironment.


Asunto(s)
Antiarrítmicos , Fibroblastos Asociados al Cáncer , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Ratones , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fenotipo , Línea Celular Tumoral , Reposicionamiento de Medicamentos , Ratones SCID , Ensayos Antitumor por Modelo de Xenoinjerto , Transición Epitelial-Mesenquimal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos
3.
PLoS One ; 19(5): e0302728, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696517

RESUMEN

Although behavioural defensive responses have been recorded several times in both laboratory and natural habitats, their neural mechanisms have seldom been investigated. To explore how chemical, water-borne cues are conveyed to the forebrain and instruct behavioural responses in anuran larvae, we conditioned newly hatched agile frog tadpoles using predator olfactory cues, specifically either native odonate larvae or alien crayfish kairomones. We expected chronic treatments to influence the basal neuronal activity of the tadpoles' mitral cells and alter their sensory neuronal connections, thereby impacting information processing. Subsequently, these neurons were acutely perfused, and their responses were compared with the defensive behaviour of tadpoles previously conditioned and exposed to the same cues. Tadpoles conditioned with odonate cues differed in both passive and active cell properties compared to those exposed to water (controls) or crayfish cues. The observed upregulation of membrane conductance and increase in both the number of active synapses and receptor density at the postsynaptic site are believed to have enhanced their responsiveness to external stimuli. Odonate cues also affected the resting membrane potential and firing rate of mitral cells during electrophysiological patch-clamp recordings, suggesting a rearrangement of the repertoire of voltage-dependent conductances expressed in cell membranes. These recorded neural changes may modulate the induction of an action potential and transmission of information. Furthermore, the recording of neural activity indicated that the lack of defensive responses towards non-native predators is due to the non-recognition of their olfactory cues.


Asunto(s)
Señales (Psicología) , Larva , Conducta Predatoria , Animales , Larva/fisiología , Conducta Predatoria/fisiología , Anuros/fisiología , Neuronas Receptoras Olfatorias/fisiología , Astacoidea/fisiología
4.
Biology (Basel) ; 13(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38248449

RESUMEN

Ageing is a biological phenomenon that determines the impairment of cognitive performances, in particular, affecting memory. Inflammation and cellular senescence are known to be involved in the pathogenesis of cognitive decline. The gut microbiota-brain axis could exert a critical role in influencing brain homeostasis during ageing, modulating neuroinflammation, and possibly leading to inflammaging. Due to their anti-ageing properties, medicinal mushrooms can be utilised as a resource for developing pharmaceuticals and functional foods. Specifically, Hericium erinaceus (He), thanks to its bioactive metabolites, exerts numerous healthy beneficial effects, such as reinforcing the immune system, counteracting ageing, and improving cognitive performance. Our previous works demonstrated the capabilities of two months of He1 standardised extract oral supplementation in preventing cognitive decline in elderly frail mice. Herein, we showed that this treatment did not change the overall gut microbiome composition but significantly modified the relative abundance of genera specifically involved in cognition and inflammation. Parallelly, a significant decrease in crucial markers of inflammation and cellular senescence, i.e., CD45, GFAP, IL6, p62, and γH2AX, was demonstrated in the dentate gyrus and Cornus Ammonis hippocampal areas through immunohistochemical experiments. In summary, we suggested beneficial and anti-inflammatory properties of He1 in mouse hippocampus through the gut microbiome-brain axis modulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA