Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Br J Cardiol ; 29(2): 15, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212791

RESUMEN

Atrial fibrillation (AF) is a major cause of recurrent stroke and transient ischaemic attack (TIA) in the UK. As many patients can have asymptomatic paroxysmal AF, prolonged arrhythmia monitoring is advised in selected patients following a stroke or TIA. This service evaluation assessed the clinical and potential health economic impact of prolonged arrhythmia monitoring post-stroke using R-TEST monitoring devices. This was a prospective, case-controlled, service evaluation in a single health board in the North of Scotland. Patients were included if they had a recent stroke or TIA, were in sinus rhythm, and did not have another indication for, or contraindication to, oral anticoagulation. A health economic model was developed to estimate the clinical and economic value delivered by the R-TEST monitoring. Approval to use anonymised patient data in this service evaluation was obtained. During the evaluation period, 100 consecutive patients were included. The average age was 70 ± 11 years, 46% were female. Stroke was the presenting complaint in 83% of patients with the other 17% having had a TIA. AF was detected in seven of 83 (8.4%) patients who had had a stroke and one of 17 (5.9%) patients with a TIA. Health economic modelling predicted that adoption of R-TEST monitoring has a high probability of demonstrating both clinical and economic benefits. In conclusion, developing a post-stroke arrhythmia monitoring service using R-TEST devices is feasible, effective at detecting AF, and represents a probable clinical and economic benefit.

2.
JMIR Mhealth Uhealth ; 10(2): e30782, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35129453

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a common, costly, and incurable respiratory disease affecting 1.2 million people in the United Kingdom alone. Acute COPD exacerbations requiring hospitalization place significant demands on health services, and the incidence of COPD in poor, remote, and rural populations is up to twice that of cities. OBJECTIVE: myCOPD is a commercial, digital health, self-management technology designed to improve COPD outcomes and mitigate demands on health services. In this pragmatic real-world feasibility study, we aimed to evaluate myCOPD use and its clinical effectiveness at reducing hospitalizations, inpatient bed days, and other National Health Service (NHS) resource use. METHODS: myCOPD engagement and NHS resource use was monitored for up to 1 year after myCOPD activation and was compared against health service use in the year prior to activation. A total of 113 participants from predominantly remote and rural communities were recruited via community-based care settings, including scheduled home visits, outpatient appointments, pulmonary rehabilitation, and phone or group appointments. There were no predetermined age, disease severity, geographical, or socioeconomic inclusion or exclusion criteria. RESULTS: Out of 113 participants, 89 activated myCOPD (78.8%), with 56% (50/89) of those participants doing so on the day of enrollment and 90% (80/89) doing so within 1 month. There was no correlation between participant enrollment, activation, or myCOPD engagement and either age, socioeconomics, rurality, or COPD severity. Most active participants used at least one myCOPD module and entered their symptom scores at least once (79/89, 89%). A subgroup (15/89, 17%) recorded their symptom scores very frequently (>1 time every 5 days), 14 of whom (93%) also used four or five myCOPD modules. Overall, there were no differences in hospital admissions, inpatient bed days, or other health service use before or after myCOPD activation, apart from a modest increase in home visits. Subgroup analysis did, however, identify a trend toward reduced inpatient bed days and hospital admissions for those participants with very high myCOPD usage. CONCLUSIONS: Our results suggest that neither age, wealth, nor geographical location represent significant barriers to using myCOPD. This finding may help mitigate perceived risks of increased health inequalities associated with the use of digital health technologies as part of routine care provision. Despite high levels of activation, myCOPD did not reduce overall demands on health services, such as hospital admissions or inpatient bed days. Subgroup analysis did, however, suggest that very high myCOPD usage was associated with a moderate reduction in NHS resource use. Thus, although our study does not support implementation of myCOPD to reduce health service demands on a population-wide basis, our results do indicate that highly engaged patients may derive benefits.


Asunto(s)
Población Rural , Automanejo , Estudios de Factibilidad , Humanos , Calidad de Vida , Automanejo/métodos , Medicina Estatal , Tecnología
3.
Methods Mol Biol ; 1576: 43-53, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-27539459

RESUMEN

Although basal cells function as human airway epithelial stem cells, analysis of these cells is limited by in vitro culture techniques that permit only minimal cell growth and differentiation. Here, we report a protocol that dramatically increases the long-term expansion of primary human airway basal cells while maintaining their genomic stability using 3T3-J2 fibroblast coculture and ROCK inhibition. We also describe techniques for the differentiation and imaging of these expanded airway stem cells as three-dimensional tracheospheres containing basal, ciliated, and mucosecretory cells. These procedures allow investigation of the airway epithelium under more physiologically relevant conditions than those found in undifferentiated monolayer cultures. Together these methods represent a novel platform for improved airway stem cell growth and differentiation that is compatible with high-throughput, high-content translational lung research as well as human airway tissue engineering and clinical cellular therapy.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Epiteliales/citología , Organoides/citología , Células Madre/citología , Ingeniería de Tejidos/métodos , Tráquea/citología , Proliferación Celular , Células Cultivadas , Humanos
4.
PLoS One ; 13(5): e0197129, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29771943

RESUMEN

There is considerable interest in the ex vivo propagation of primary human basal epithelial stem/progenitor cells with a view to their use in drug development, toxicity testing and regenerative medicine. These cells can be expanded in co-culture with mitotically inactivated 3T3-J2 murine embryonic feeder cells but, similar to other epithelial cell culture systems employing 3T3-J2 cells, the aspects of cross-talk between 3T3-J2 cells and human airway basal cells that are critical for their expansion remain largely unknown. In this study, we investigated secreted growth factors that are produced by 3T3-J2 cells and act upon primary human airway basal cells. We found robust production of hepatocyte growth factor (HGF) from fibroblast feeder cells following mitotic inactivation. Consistent with the limited cross-species reactivity of murine HGF on the human HGF receptor (MET; HGFR), MET inhibition did not affect proliferative responses in human airway basal cells and HGF could not replace feeder cells in this culture system. However, we found that murine HGF is not completely inactive on human airway epithelial cells or cancer cell lines but stimulates the phosphorylation of GRB2-associated-binding protein 2 (GAB2) and signal transducer and activator of transcription 6 (STAT6). Although HGF induces phosphorylation of STAT6 tyrosine 641 (Y641), there is no subsequent STAT6 nuclear translocation or STAT6-driven transcriptional response. Overall, these findings highlight the relevance of cross-species protein interactions between murine feeder cells and human epithelial cells in 3T3-J2 co-culture and demonstrate that STAT6 phosphorylation occurs in response to MET activation in epithelial cells. However, STAT6 nuclear translocation does not occur in response to HGF, precluding the transcriptional activity of STAT6.


Asunto(s)
Comunicación Celular , Células Epiteliales/metabolismo , Células Nutrientes/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Mucosa Respiratoria/metabolismo , Animales , Línea Celular , Técnicas de Cocultivo , Activación Enzimática , Células Epiteliales/citología , Células Nutrientes/citología , Humanos , Ratones , Mucosa Respiratoria/citología , Factor de Transcripción STAT6/metabolismo
5.
Elife ; 62017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28665271

RESUMEN

The embryonic mouse lung is a widely used substitute for human lung development. For example, attempts to differentiate human pluripotent stem cells to lung epithelium rely on passing through progenitor states that have only been described in mouse. The tip epithelium of the branching mouse lung is a multipotent progenitor pool that self-renews and produces differentiating descendants. We hypothesized that the human distal tip epithelium is an analogous progenitor population and tested this by examining morphology, gene expression and in vitro self-renewal and differentiation capacity of human tips. These experiments confirm that human and mouse tips are analogous and identify signalling pathways that are sufficient for long-term self-renewal of human tips as differentiation-competent organoids. Moreover, we identify mouse-human differences, including markers that define progenitor states and signalling requirements for long-term self-renewal. Our organoid system provides a genetically-tractable tool that will allow these human-specific features of lung development to be investigated.


Asunto(s)
Pulmón/citología , Organoides/crecimiento & desarrollo , Mucosa Respiratoria/citología , Células Madre/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Humanos , Ratones
7.
Eur Respir Rev ; 26(143)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28143875

RESUMEN

Lung cancer is the most lethal cancer type worldwide, with the majority of patients presenting with advanced stage disease. Targeting early stage disease pathogenesis would allow dramatic improvements in lung cancer patient survival. Recently, cell migration has been shown to be an integral process in early lung cancer ontogeny, with preinvasive lung cancer cells shown to migrate across normal epithelium prior to developing into invasive disease. TP53 mutations are the most abundant mutations in human nonsmall cell lung cancers and have been shown to increase cell migration via regulation of Rho-GTPase protein activity. In this review, we explore the possibility of targeting TP53-mediated Rho-GTPase activity in early lung cancer and the opportunities for translating this preclinical research into effective therapies for early stage lung cancer patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Terapia Molecular Dirigida , Mutación , Invasividad Neoplásica , Estadificación de Neoplasias , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética , Proteínas de Unión al GTP rho/metabolismo
8.
Sci Rep ; 6: 24006, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27035095

RESUMEN

Although squamous cell carcinomas (SqCCs) of the lungs, head and neck, oesophagus, and cervix account for up to 30% of cancer deaths, the mechanisms that regulate disease progression remain incompletely understood. Here, we use gene transduction and human tumor xenograft assays to establish that the tumour suppressor Cell adhesion molecule 1 (CADM1) inhibits SqCC proliferation and invasion, processes fundamental to disease progression. We determine that the extracellular domain of CADM1 mediates these effects by forming a complex with HER2 and integrin α6ß4 at the cell surface that disrupts downstream STAT3 activity. We subsequently show that treating CADM1 null tumours with the JAK/STAT inhibitor ruxolitinib mimics CADM1 gene restoration in preventing SqCC growth and metastases. Overall, this study identifies a novel mechanism by which CADM1 prevents SqCC progression and suggests that screening tumours for loss of CADM1 expression will help identify those patients most likely to benefit from JAK/STAT targeted chemotherapies.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Inmunoglobulinas/metabolismo , Neoplasias Pulmonares/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Carcinoma de Células Escamosas/patología , Molécula 1 de Adhesión Celular , Moléculas de Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunoglobulinas/genética , Integrina alfa6beta4/metabolismo , Neoplasias Pulmonares/patología , Proteínas de la Membrana/metabolismo , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Trasplante de Neoplasias , Nitrilos , Pirazoles/química , Pirimidinas , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología
9.
Am J Respir Crit Care Med ; 194(2): 156-68, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-26840431

RESUMEN

RATIONALE: Stem cell-based tracheal replacement represents an emerging therapeutic option for patients with otherwise untreatable airway diseases including long-segment congenital tracheal stenosis and upper airway tumors. Clinical experience demonstrates that restoration of mucociliary clearance in the lungs after transplantation of tissue-engineered grafts is critical, with preclinical studies showing that seeding scaffolds with autologous mucosa improves regeneration. High epithelial cell-seeding densities are required in regenerative medicine, and existing techniques are inadequate to achieve coverage of clinically suitable grafts. OBJECTIVES: To define a scalable cell culture system to deliver airway epithelium to clinical grafts. METHODS: Human respiratory epithelial cells derived from endobronchial biopsies were cultured using a combination of mitotically inactivated fibroblasts and Rho-associated protein kinase (ROCK) inhibition using Y-27632 (3T3+Y). Cells were analyzed by immunofluorescence, quantitative polymerase chain reaction, and flow cytometry to assess airway stem cell marker expression. Karyotyping and multiplex ligation-dependent probe amplification were performed to assess cell safety. Differentiation capacity was tested in three-dimensional tracheospheres, organotypic cultures, air-liquid interface cultures, and an in vivo tracheal xenograft model. Ciliary function was assessed in air-liquid interface cultures. MEASUREMENTS AND MAIN RESULTS: 3T3-J2 feeder cells and ROCK inhibition allowed rapid expansion of airway basal cells. These cells were capable of multipotent differentiation in vitro, generating both ciliated and goblet cell lineages. Cilia were functional with normal beat frequency and pattern. Cultured cells repopulated tracheal scaffolds in a heterotopic transplantation xenograft model. CONCLUSIONS: Our method generates large numbers of functional airway basal epithelial cells with the efficiency demanded by clinical transplantation, suggesting its suitability for use in tracheal reconstruction.


Asunto(s)
Células Epiteliales/metabolismo , Enfermedades Respiratorias/terapia , Células Madre/metabolismo , Ingeniería de Tejidos/métodos , Diferenciación Celular/fisiología , Células Cultivadas , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Depuración Mucociliar/fisiología , Reacción en Cadena de la Polimerasa , Mucosa Respiratoria/fisiología
10.
Ann Am Thorac Soc ; 12(4): S79-97, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25897748

RESUMEN

The University of Vermont College of Medicine and the Vermont Lung Center, in collaboration with the NHLBI, Alpha-1 Foundation, American Thoracic Society, European Respiratory Society, International Society for Cell Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," held July 29 to August 1, 2013 at the University of Vermont. The conference objectives were to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are all rapidly expanding areas of study that both provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, discuss and debate current controversies, and identify future research directions and opportunities for both basic and translational research in cell-based therapies for lung diseases. This conference was a follow-up to four previous biennial conferences held at the University of Vermont in 2005, 2007, 2009, and 2011. Each of those conferences, also sponsored by the National Institutes of Health, American Thoracic Society, and Respiratory Disease Foundations, has been important in helping guide research and funding priorities. The major conference recommendations are summarized at the end of the report and highlight both the significant progress and major challenges in these rapidly progressing fields.


Asunto(s)
Enfermedades Pulmonares/terapia , Pulmón/fisiología , Trasplante de Células Madre , Células Madre/fisiología , Ingeniería de Tejidos , Enfermedades de la Tráquea/terapia , Tratamiento Basado en Trasplante de Células y Tejidos , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Pulmón/citología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , National Heart, Lung, and Blood Institute (U.S.) , Sociedades Médicas , Células Madre/citología , Estados Unidos
12.
Biochem Soc Trans ; 42(3): 607-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24849226

RESUMEN

The field of regenerative medicine offers tantalizing hope for the repair and replacement of damaged organs and tissues, with the ultimate goal of restoring normal tissue function. This field represents an enormous range of biological, chemical and biophysical technologies that harness the restorative properties of living materials, especially human cells, to produce new molecular and cellular medicines, diagnostics, devices and healthcare research tools. The goal of this Biochemical Society Annual Symposium was to explore the key biochemical determinants of tissue regeneration, and we highlight the contribution of biochemistry to this emerging field of regenerative medicine.


Asunto(s)
Bioquímica , Medicina Regenerativa , Humanos
13.
Biochem Soc Trans ; 42(3): 657-61, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24849234

RESUMEN

Airway diseases including COPD (chronic obstructive pulmonary disease), cystic fibrosis and lung cancer are leading causes of worldwide morbidity and mortality, with annual healthcare costs of billions of pounds. True regeneration of damaged airways offers the possibility of restoring lung function and protecting against airway transformation. Recently, advances in tissue engineering have allowed the development of cadaveric and biosynthetic airway grafts. Although these have produced encouraging results, the ability to achieve long-term functional airway regeneration remains a major challenge. To promote regeneration, exogenously delivered stem and progenitor cells are being trialled as cellular therapies. Unfortunately, current evidence suggests that only small numbers of exogenously delivered stem cells engraft within lungs, thereby limiting their utility for airway repair. In other organ systems, magnetic targeting has shown promise for improving long-term robust cell engraftment. This technique involves in vitro cell expansion, magnetic actuation and magnetically guided cell engraftment to sites of tissue damage. In the present paper, we discuss the utility of coupling stem cell-mediated cellular therapy with magnetic targeting for improving airway regeneration.


Asunto(s)
Bronquios/fisiopatología , Tratamiento Basado en Trasplante de Células y Tejidos , Fibrosis Quística/fisiopatología , Neoplasias Pulmonares/fisiopatología , Magnetismo , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Regeneración , Tráquea/fisiopatología , Humanos , Células Madre/citología , Ingeniería de Tejidos
14.
Thorax ; 69(7): 638-47, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24567297

RESUMEN

Malignant pleural mesothelioma is a rare but devastating cancer of the pleural lining with no effective treatment. The tumour is often diffusely spread throughout the chest cavity, making surgical resection difficult, while systemic chemotherapy offers limited benefit. Bone marrow-derived mesenchymal stem cells (MSCs) home to and incorporate into tumour stroma, making them good candidates to deliver anticancer therapies. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic molecule that selectively induces apoptosis in cancer cells, leaving healthy cells unaffected. We hypothesised that human MSCs expressing TRAIL (MSCTRAIL) would home to an in vivo model of malignant pleural mesothelioma and reduce tumour growth. Human MSCs transduced with a lentiviral vector encoding TRAIL were shown in vitro to kill multiple malignant mesothelioma cell lines as predicted by sensitivity to recombinant TRAIL (rTRAIL). In vivo MSC homing was delineated using dual fluorescence and bioluminescent imaging, and we observed that higher levels of MSC engraftment occur after intravenous delivery compared with intrapleural delivery of MSCs. Finally, we show that intravenous delivery of MSCTRAIL results in a reduction in malignant pleural mesothelioma tumour growth in vivo via an increase in tumour cell apoptosis.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/fisiología , Mesotelioma/metabolismo , Neoplasias Pleurales/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Administración Tópica , Animales , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Citometría de Flujo , Humanos , Inmunohistoquímica , Infusiones Intravenosas , Neoplasias Pulmonares/patología , Células Madre Mesenquimatosas/metabolismo , Mesotelioma/patología , Mesotelioma Maligno , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Pleurales/patología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Transfección , Carga Tumoral/efectos de los fármacos , Células Tumorales Cultivadas
15.
Thorax ; 69(6): 548-57, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24550057

RESUMEN

BACKGROUND: Squamous cell carcinoma of the lung is a common cancer with 95% mortality at 5 years. These cancers arise from preinvasive lesions, which have a natural history of development progressing through increasing severity of dysplasia to carcinoma in situ (CIS), and in some cases, ending in transformation to invasive carcinoma. Synchronous preinvasive lesions identified at autopsy have been previously shown to be clonally related. METHODS: Using autofluorescence bronchoscopy that allows visual observation of preinvasive lesions within the upper airways, together with molecular profiling of biopsies using gene sequencing and loss-of-heterozygosity analysis from both preinvasive lesions and from intervening normal tissue, we have monitored individual lesions longitudinally and documented their visual, histological and molecular relationship. RESULTS: We demonstrate that rather than forming a contiguous field of abnormal tissue, clonal CIS lesions can develop at multiple anatomically discrete sites over time. Further, we demonstrate that patients with CIS in the trachea have invariably had previous lesions that have migrated proximally, and in one case, into the other lung over a period of 12 years. CONCLUSIONS: Molecular information from these unique biopsies provides for the first time evidence that field cancerisation of the upper airways can occur through cell migration rather than via local contiguous cellular expansion as previously thought. Our findings urge a clinical strategy of ablating high-grade premalignant airway lesions with subsequent attentive surveillance for recurrence in the bronchial tree.


Asunto(s)
Carcinoma in Situ , Carcinoma de Células Escamosas , Movimiento Celular , Neoplasias Pulmonares , Mutación , Lesiones Precancerosas , Neoplasias de la Tráquea , Adulto , Carcinoma in Situ/genética , Carcinoma in Situ/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Genes p53 , Humanos , Pérdida de Heterocigocidad , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Neoplasias de la Tráquea/genética , Neoplasias de la Tráquea/patología
16.
Eur Respir J ; 44(2): 513-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24435005

RESUMEN

Chronic respiratory diseases, including pulmonary fibrosis, chronic obstructive pulmonary disease (COPD) and lung cancer, are the second leading cause of death among Europeans. Despite this, there have been only a few therapeutic advances in these conditions over the past 20 years. In this review we provide evidence that targeting the epidermal growth factor receptor (EGFR) signalling pathway may represent a novel therapeutic panacea for treating chronic lung disease. Using evidence from human patient samples, transgenic animal models, and cell and molecular biology studies we highlight the roles of this signalling pathway in lung development, homeostasis, repair, and disease ontogeny. We identify mechanisms underlying lung EGFR pathway regulation and suggest how targeting these mechanisms using new and existing therapies has the potential to improve future lung cancer, COPD and pulmonary fibrosis patient outcomes.


Asunto(s)
Receptores ErbB/metabolismo , Enfermedades Pulmonares/fisiopatología , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Receptores ErbB/antagonistas & inhibidores , Humanos , Inflamación , Pulmón/fisiología , Neoplasias Pulmonares/metabolismo , Ratones , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Fibrosis Pulmonar/fisiopatología , Transducción de Señal , Resultado del Tratamiento
17.
Elife ; 2: e00966, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24151545

RESUMEN

Lineage tracing approaches have provided new insights into the cellular mechanisms that support tissue homeostasis in mice. However, the relevance of these discoveries to human epithelial homeostasis and its alterations in disease is unknown. By developing a novel quantitative approach for the analysis of somatic mitochondrial mutations that are accumulated over time, we demonstrate that the human upper airway epithelium is maintained by an equipotent basal progenitor cell population, in which the chance loss of cells due to lineage commitment is perfectly compensated by the duplication of neighbours, leading to "neutral drift" of the clone population. Further, we show that this process is accelerated in the airways of smokers, leading to intensified clonal consolidation and providing a background for tumorigenesis. This study provides a benchmark to show how somatic mutations provide quantitative information on homeostatic growth in human tissues, and a platform to explore factors leading to dysregulation and disease. DOI:http://dx.doi.org/10.7554/eLife.00966.001.


Asunto(s)
Células Madre/metabolismo , Procesos Estocásticos , Tráquea/metabolismo , Células Epiteliales/metabolismo , Humanos , Fumar/metabolismo , Fumar/patología , Tráquea/citología
18.
J Pathol ; 229(4): 608-20, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23208928

RESUMEN

Epidermal growth factor receptor (EGFR) pathway activation is a frequent event in human carcinomas. Mutations in EGFR itself are, however, rare, and the mechanisms regulating EGFR activation remain elusive. Leucine-rich immunoglobulin repeats-1 (LRIG1), an inhibitor of EGFR activity, is one of four genes identified that predict patient survival across solid tumour types including breast, lung, melanoma, glioma, and bladder. We show that deletion of Lrig1 is sufficient to promote murine airway hyperplasia through loss of contact inhibition and that re-expression of LRIG1 in human lung cancer cells inhibits tumourigenesis. LRIG1 regulation of contact inhibition occurs via ternary complex formation with EGFR and E-cadherin with downstream modulation of EGFR activity. We find that LRIG1 LOH is frequent across cancers and its loss is an early event in the development of human squamous carcinomas. Our findings imply that the early stages of squamous carcinoma development are driven by a change in amplitude of EGFR signalling governed by the loss of contact inhibition.


Asunto(s)
Cadherinas/metabolismo , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Glicoproteínas de Membrana/genética , Proteínas del Tejido Nervioso/genética , Lesiones Precancerosas/genética , Animales , Cadherinas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Inhibición de Contacto , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Homeostasis , Humanos , Pérdida de Heterocigocidad , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Complejos Multiproteicos , Proteínas del Tejido Nervioso/metabolismo , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología , Eliminación de Secuencia , Transducción de Señal
19.
Stem Cells ; 31(3): 417-22, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23203919

RESUMEN

Epithelial organ remodeling is a major contributing factor to worldwide death and disease, costing healthcare systems billions of dollars every year. Despite this, most fundamental epithelial organ research fails to produce new therapies and mortality rates for epithelial organ diseases remain unacceptably high. In large part, this failure in translating basic epithelial research into clinical therapy is due to a lack of relevance in existing preclinical models. To correct this, new models are required that improve preclinical target identification, pharmacological lead validation, and compound optimization. In this review, we discuss the relevance of human stem cell-derived, three-dimensional organoid models for addressing each of these challenges. We highlight the advantages of stem cell-derived organoid models over existing culture systems, discuss recent advances in epithelial tissue-specific organoids, and present a paradigm for using organoid models in human translational medicine.


Asunto(s)
Organoides/citología , Organoides/trasplante , Trasplante de Células Madre/métodos , Células Madre/citología , Investigación Biomédica Traslacional/métodos , Diferenciación Celular/fisiología , Humanos , Modelos Biológicos
20.
Methods Mol Biol ; 916: 263-74, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22914947

RESUMEN

Local tissue stem cells are known to exist in mammalian lungs but their role in epithelial maintenance remains unclear. We therefore developed murine aggregation chimera and wholemount imaging techniques to assess the contribution of these cells to lung homeostasis and repair. In this chapter we provide further details regarding the generation of murine aggregation chimera mice and their subsequent use in wholemount lung imaging. We also describe methods related to the interpretation of this data that allows for quantitative assessment of airway stem cell activation versus quiescence. Using these techniques, it is possible to compare the growth and differentiation capacity of various lung epithelial cells in normal, repairing, and diseased states.


Asunto(s)
Hibridación Genética , Pulmón/citología , Imagen Molecular/métodos , Células Madre/citología , Animales , Implantación del Embrión , Embrión de Mamíferos/embriología , Embrión de Mamíferos/fisiología , Femenino , Fertilización , Procesamiento de Imagen Asistido por Computador , Pulmón/embriología , Masculino , Ratones , Microdisección , Microscopía Confocal , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...