Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Res (Stuttg) ; 65(7): 354-60, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25050519

RESUMEN

Iron is involved in the formation as well as in the scavenging of reactive oxygen and nitrogen species. Thus, iron can induce as well as inhibit both oxidative and nitrosative stress. It also has a key role in reactive oxygen and nitrogen species-mediated apoptosis. We assessed the differences in tyrosine nitration and caspase 3 expression in the liver, heart, and kidneys of rats treated weekly with intravenous ferumoxytol, iron isomaltoside 1000, iron dextran, iron sucrose and ferric carboxymaltose (40 mg iron/kg body weight) for 5 weeks. Nitrotyrosine was quantified in tissue homogenates by Western blotting and the distribution of nitrotyrosine and caspase 3 was assessed in tissue sections by immunohistochemistry. Ferric carboxymaltose and iron sucrose administration did not result in detectable levels of nitrotyrosine or significant levels of caspase 3 vs. control in any of the tissue studied. Nitrotyrosine and caspase 3 levels were significantly (p<0.01) increased in all assessed organs of animals treated with iron dextran and iron isomaltoside 1000, as well as in the liver and kidneys of ferumoxytol-treated animals compared to isotonic saline solution (control). Nitrotyrosine and caspase 3 levels were shown to correlate positively with the amount of Prussian blue-detectable iron(III) deposits in iron dextran- and iron isomaltoside 1000-treated rats but not in ferumoxytol-treated rats, suggesting that iron dextran, iron isomaltoside 1000 and ferumoxytol induce nitrosative (and oxidative) stress as well as apoptosis via different mechanism(s).


Asunto(s)
Apoptosis/efectos de los fármacos , Disacáridos/efectos adversos , Compuestos Férricos/efectos adversos , Óxido Ferrosoférrico/efectos adversos , Ácido Glucárico/efectos adversos , Complejo Hierro-Dextran/efectos adversos , Maltosa/análogos & derivados , Tirosina/análogos & derivados , Administración Intravenosa , Animales , Caspasa 3/biosíntesis , Disacáridos/administración & dosificación , Femenino , Compuestos Férricos/administración & dosificación , Sacarato de Óxido Férrico , Óxido Ferrosoférrico/administración & dosificación , Ácido Glucárico/administración & dosificación , Complejo Hierro-Dextran/administración & dosificación , Riñón/metabolismo , Hígado/metabolismo , Masculino , Maltosa/administración & dosificación , Maltosa/efectos adversos , Modelos Animales , Miocardio/metabolismo , Ratas , Tirosina/metabolismo
2.
Regul Pept ; 185: 37-43, 2013 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-23816464

RESUMEN

The aim of the present study was to determine if insulin is able to modulate the pressor response to intracerebroventricularly administered angiotensin II in insulin resistant fructose overloaded rats. Male Sprague-Dawley rats were divided into two groups: 1) Control group (C) with tap water to drink for 6 weeks (n=36); and 2) fructose treated (F), with fructose solution (10% w/v) to drink for 6 weeks (n=36). On the day of the experiment, anesthetized male C and F rats were intracerebroventricularly infused with insulin (12 mU/h, n=15) or Ringer's solution as vehicle (n=15) for 2h. Immediately, changes in mean arterial pressure (MAP) in response to an intracerebroventricular subpressor dose of angiotensin II (5 pmol, n=10) or vehicle (n=5) were measured for 10 min. Then, hypothalami were removed and Akt and ERK1/2 phosphorylation levels were determined. In a subset of C (n=10) and F (n=20) animals, PD98059 (p44/42 MAPK inhibitor) or vehicle was administered intracerebroventricularly at a flow rate of 5 µl/min for 1 min. Ten minutes later, insulin (12 mU/h, n=5 for each group) or vehicle (Ringer's solution, only in the F group, n=5) was perfused for 2h at a flow rate of 4 µl/h, and cardiovascular parameters were measured every 15 min. Immediately, changes in MAP and HR in response to a subpressor dose of Ang II (5 pmol/2 µl) were evaluated for 10 min (n=5 for each group). In other subset of animals (n=6 for each group), AT1 and AT2 hypothalamic receptor levels were measured by Western blotting. Intracerebroventricular insulin pre-treatment increased the pressor response to angiotensin II in C rats. In F rats (with or without insulin pretreatment), the pressor response to angiotensin II was higher than that in vehicle pre-treated C animals, but similar to that observed in C after insulin infusion. In C rats phospho-ERK 1/2 hypothalamic levels significantly increased after angiotensin II injection in insulin pretreated animals compared to vehicle pre-treated rats, suggesting that MAPK activation might be involved in insulin potentiation of blood pressure response to angiotensin II in the brain. Phospho-ERK 1/2 hypothalamic levels were significantly increased in vehicle treated F rats compared to C, suggesting that basal MAPK activation might play a role in the enhanced response to angiotensin II observed in these animals. Finally, in F rats, either after vehicle or insulin infusion, angiotensin II injection was associated with a similar increase in phospho-ERK 1/2 hypothalamic levels, comparable to that observed after angiotensin II injection in insulin pre-treated C animals. ERK 1/2 blockade significantly reduced MAP in F rats compared to C. Moreover, ERK 1/2 inhibition completely abolished the Ang II pressor response in F rats and in insulin pre-treated C animals. All these findings suggest that insulin-angiotensin II interaction at hypothalamic level might be involved in the increase in blood pressure observed in the insulin resistant state.


Asunto(s)
Angiotensina II/fisiología , Presión Sanguínea , Insulina/fisiología , Síndrome Metabólico/fisiopatología , Angiotensina II/administración & dosificación , Animales , Fructosa , Hipotálamo/metabolismo , Inyecciones Intraventriculares , Insulina/administración & dosificación , Resistencia a la Insulina , Sistema de Señalización de MAP Quinasas , Masculino , Síndrome Metabólico/inducido químicamente , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Vasoconstrictores/administración & dosificación , Sistema Vasomotor/fisiopatología
3.
J Mol Endocrinol ; 47(2): 167-77, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21727153

RESUMEN

Acromegaly is associated with cardiac hypertrophy, which is believed to be a direct consequence of chronically elevated GH and IGF1. Given that insulin is important for cardiac growth and function, and considering that GH excess induces hyperinsulinemia, insulin resistance, and cardiac alterations, it is of interest to study insulin sensitivity in this tissue under chronic conditions of elevated GH. Transgenic mice overexpressing GH present cardiomegaly and perivascular and interstitial fibrosis in the heart. Mice received an insulin injection, the heart was removed after 2  min, and immunoblotting assays of tissue extracts were performed to evaluate the activation and abundance of insulin-signaling mediators. Insulin-induced tyrosine phosphorylation of the insulin receptor (IR) was conserved in transgenic mice, but the phosphorylation of IR substrate 1 (IRS1), its association with the regulatory subunit of the phosphatidylinositol 3-kinase (PI3K), and the phosphorylation of AKT were decreased. In addition, total content of the glucose transporter GLUT4 was reduced in transgenic mice. Insulin failed to induce the phosphorylation of the mammalian target of rapamycin (mTOR). However, transgenic mice displayed increased basal activation of the IR/IRS1/PI3K/AKT/mTOR and p38 signaling pathways along with higher serine phosphorylation of IRS1, which is recognized as an inhibitory modification. We conclude that GH-overexpressing mice exhibit basal activation of insulin signaling but decreased sensitivity to acute insulin stimulation at several signaling steps downstream of the IR in the heart. These alterations may be associated with the cardiac pathology observed in these animals.


Asunto(s)
Hormona del Crecimiento/metabolismo , Corazón/efectos de los fármacos , Insulina/farmacología , Miocardio/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Bovinos , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Femenino , Hormona del Crecimiento/genética , Immunoblotting , Inmunoprecipitación , Ratones , Ratones Transgénicos , Ratas , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...