Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 928577, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247592

RESUMEN

Inselbergs are azonal formations found scattered in different biomes globally. The first floristic list focusing on an inselberg in the Brazilian Amazon is presented here. We aimed to investigate floristic and phylogenetic connections among Neotropical inselbergs and analyze whether environmental variables act as a filter of plant lineages. We used a database compiled from 50 sites spanning three main Neotropical biomes (Amazon, 11 sites, Atlantic Forest, 14 sites, and Caatinga, 25 sites) comprising 2270 Angiosperm species. Our data highlight the vastly different inselberg flora found in each biome. The inselberg floras of the Atlantic Forest and Caatinga show closer phylogenetic ties than those seen in the other biome pairs. The phylogenetic lineages found in all three biomes are also strongly divergent, even within plant families. The dissimilarity between biomes suggests that distinct biogeographical histories might have unfolded even under comparable environmental filtering. Our data suggest that the inselberg flora is more related to the biome where it is located than to other factors, even when the microclimatic conditions in the outcrops differ strongly from those of the surrounding matrix. Relative to the other biomes, the flora of the Caatinga inselbergs has the highest level of species turnover. There is a possibility that plants colonized these rather distant inselbergs even when they were found under very different climatic conditions than those in the Amazonian and Atlantic Forest biomes. It is worth noting that none of the studied inselbergs found in the Caatinga biome is protected. In view of the uniqueness and drought-resilient lineages present in each group of inselbergs, along with their vulnerability to destruction or disturbance and their strong connection with water availability, we stress the need to protect this ecosystem not only to conserve plants potentially useful for ecological restoration but also to preserve the balance of this ecosystem and its connections.

2.
Gigascience ; 112022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35639882

RESUMEN

BACKGROUND: Animal pollination is an important ecosystem function and service, ensuring both the integrity of natural systems and human well-being. Although many knowledge shortfalls remain, some high-quality data sets on biological interactions are now available. The development and adoption of standards for biodiversity data and metadata has promoted great advances in biological data sharing and aggregation, supporting large-scale studies and science-based public policies. However, these standards are currently not suitable to fully support interaction data sharing. RESULTS: Here we present a vocabulary of terms and a data model for sharing plant-pollinator interactions data based on the Darwin Core standard. The vocabulary introduces 48 new terms targeting several aspects of plant-pollinator interactions and can be used to capture information from different approaches and scales. Additionally, we provide solutions for data serialization using RDF, XML, and DwC-Archives and recommendations of existing controlled vocabularies for some of the terms. Our contribution supports open access to standardized data on plant-pollinator interactions. CONCLUSIONS: The adoption of the vocabulary would facilitate data sharing to support studies ranging from the spatial and temporal distribution of interactions to the taxonomic, phenological, functional, and phylogenetic aspects of plant-pollinator interactions. We expect to fill data and knowledge gaps, thus further enabling scientific research on the ecology and evolution of plant-pollinator communities, biodiversity conservation, ecosystem services, and the development of public policies. The proposed data model is flexible and can be adapted for sharing other types of interactions data by developing discipline-specific vocabularies of terms.


Asunto(s)
Ecosistema , Polinización , Animales , Biodiversidad , Filogenia , Estándares de Referencia
3.
Environ Entomol ; 49(6): 1374-1382, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33015710

RESUMEN

Most studies analyze fragmentation due to habitat loss caused by anthropogenic activities and few of them analyzed fragmentation on naturally fragmented areas. In the Eastern Amazon, it is possible to find areas naturally open and surrounded by pristine forest. Understanding how species respond to isolation in these areas is an important challenge for decision-making processes aiming conservation and restoration. Using standardized methods of bee collection (entomological nets, bait trap, pan trap, and nest trap), the objective of this study was to analyze the composition and diversity of bees occurring on six isolated outcrops located in two protected areas within Amazon biome. More specifically, we tested 1) if the dissimilarity in bee species composition is explained by the isolation of outcrops and 2) if bee richness, abundance, and Shannon diversity can be explained by the outcrop size. We found 118 species, with the Meliponini and Euglossini (Hymenoptera: Apidae) tribes representing the highest number of species. The similarity in species composition across all outcrops is high and is not explained by the isolation. In addition, the richness, abundance, and Shannon diversity are not explained by outcrop size. Forest does not seem to be a barrier to bee movement, and although most species probably nest in the forests, they use the highly diverse plants of the outcrops as a complementary food source.


Asunto(s)
Bosques , Himenópteros , Animales , Abejas , Biodiversidad , Ecosistema , Plantas
4.
Evol Appl ; 12(6): 1164-1177, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31293629

RESUMEN

Habitat degradation and climate change are currently threatening wild pollinators, compromising their ability to provide pollination services to wild and cultivated plants. Landscape genomics offers powerful tools to assess the influence of landscape modifications on genetic diversity and functional connectivity, and to identify adaptations to local environmental conditions that could facilitate future bee survival. Here, we assessed range-wide patterns of genetic structure, genetic diversity, gene flow, and local adaptation in the stingless bee Melipona subnitida, a tropical pollinator of key biological and economic importance inhabiting one of the driest and hottest regions of South America. Our results reveal four genetic clusters across the species' full distribution range. All populations were found to be under a mutation-drift equilibrium, and genetic diversity was not influenced by the amount of reminiscent natural habitats. However, genetic relatedness was spatially autocorrelated and isolation by landscape resistance explained range-wide relatedness patterns better than isolation by geographic distance, contradicting earlier findings for stingless bees. Specifically, gene flow was enhanced by increased thermal stability, higher forest cover, lower elevations, and less corrugated terrains. Finally, we detected genomic signatures of adaptation to temperature, precipitation, and forest cover, spatially distributed in latitudinal and altitudinal patterns. Taken together, our findings shed important light on the life history of M. subnitida and highlight the role of regions with large thermal fluctuations, deforested areas, and mountain ranges as dispersal barriers. Conservation actions such as restricting long-distance colony transportation, preserving local adaptations, and improving the connectivity between highlands and lowlands are likely to assure future pollination services.

5.
PLoS One ; 14(4): e0215229, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30973922

RESUMEN

Although the impacts of climate change on biodiversity are increasing worldwide, few studies have attempted to forecast these impacts on Amazon Tropical Forest. In this study, we estimated the impact of climate change on Amazonian avian assemblages considering range shifts, species loss, vulnerability of ecosystem functioning, future effectiveness of current protected areas and potential climatically stable areas for conservation actions. Species distribution modelling based on two algorithms and three different scenarios of climate change was used to forecast 501 avian species, organized on main ecosystem functions (frugivores, insectivores and nectarivores) for years 2050 and 2070. Considering the entire study area, we estimated that between 4 and 19% of the species will find no suitable habitat. Inside the currently established protected areas, species loss could be over 70%. Our results suggest that frugivores are the most sensitive guild, which could bring consequences on seed dispersal functions and on natural regeneration. Moreover, we identified the western and northern parts of the study area as climatically stable. Climate change will potentially affect avian assemblages in southeastern Amazonia with detrimental consequences to their ecosystem functions. Information provided here is essential to conservation practitioners and decision makers to help on planning their actions.


Asunto(s)
Aves , Cambio Climático , Bosque Lluvioso , Algoritmos , Animales , Biodiversidad , Aves/clasificación , Brasil , Conservación de los Recursos Naturales , Ecosistema , Bosques , Calentamiento Global , Modelos Biológicos
6.
PLoS One ; 14(1): e0211095, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30653607

RESUMEN

The eastern Brazilian Amazon contains many isolated ferruginous savanna ecosystem patches (locally known as 'canga vegetation') located on ironstone rocky outcrops on the top of plateaus and ridges, surrounded by tropical rainforests. In the Carajás Mineral Province (CMP), these outcrops contain large iron ore reserves that have been exploited by opencast mining since the 1980s. The canga vegetation is particularly impacted by mining, since the iron ores that occur are associated with this type of vegetation and currently, little is known regarding the extent of canga vegetation patches before mining activities began. This information is important for quantifying the impact of mining, in addition to helping plan conservation programmes. Here, land cover changes of the Canga area in the CMP are evaluated by estimating the pre-mining area of canga patches and comparing it to the actual extent of canga patches. We mapped canga vegetation using geographic object-based image analysis (GEOBIA) from 1973 Landsat-1 MSS, 1984 and 2001 Landsat-5 TM, and 2016 Landsat-8 OLI images, and found that canga vegetation originally occupied an area of 144.2 km2 before mining exploitation. By 2016, 19.6% of the canga area was lost in the CMP due to conversion to other land-use types (mining areas, pasturelands). In the Carajás National Forest (CNF), located within the CMP, the original canga vegetation covered 105.2 km2 (2.55% of the CNF total area), and in 2016, canga vegetation occupied an area of 77.2 km2 (1.87%). Therefore, after more than three decades of mineral exploitation, less than 20% of the total canga area was lost. Currently, 21% of the canga area in the CMP is protected by the Campos Ferruginosos National Park. By documenting the initial extent of canga vegetation in the eastern Amazon and the extent to which it has been lost due to mining operations, the results of this work are the first step towards conserving this ecosystem.


Asunto(s)
Biodiversidad , Bosques , Pradera , Hierro , Brasil , Conservación de los Recursos Naturales , Hierro/química , Hierro/metabolismo , Minería
7.
Front Plant Sci ; 9: 1052, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30087684

RESUMEN

Plants living above and around caves represent an important, albeit poorly studied, resource within cave ecosystems. The presence of plant material (root-like structures or rhizothemes, saplings, seeds, and seedlings) correlates positively with the biodiversity of the cave dwelling animals as shown for iron-ore caves in Carajás, Pará, Brazil. Plant material collected in caves has proven to be difficult to identify by traditional botanical methods, thus this research aims to provide a qualitative insight into the taxonomy and morphology of rhizothemes and other plant fragments found in the caves. The identification process used a combination of different molecular markers (ITS2, rbcL, and trnH-psbA) followed by a comparison of the sequences obtained against publicly available databases. The rhizothemes were submitted to micromorphological analysis to ascertain their putative root or stem origin and to compare their anatomy with known patterns found in the plant families or genera recovered through molecular matches. All studied samples were Angiosperms, mostly belonging to subclass Rosideae, within four orders: Malpighiales (Euphorbiaceae, Hypericaceae), Sapindales (Anacardiaceae and Sapindaceae), Myrtales (Myrtaceae), Fabales (Fabaceae), and only two belonging to subclass Asteridae, order Gentianales (Apocynaceae). Some of the samples were matched to generic level, with ITS2 being the best marker to identify the fragments because it shows high degree of sequence variation even at specific level and result reliability. All rhizothemes turned out to be roots, and correspondence was found between the existing literature and the individual anatomical patterns for the families and genera retrieved. DNA barcode has proved to be a useful tool to identify plant fragments found in this challenging environment. However, the existence of well curated, authoritatively named collections with ample biological information has proven to be essential to achieve a reliable identification.

8.
Front Plant Sci ; 9: 532, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868042

RESUMEN

Although genetic diversity ultimately determines the ability of organisms to adapt to environmental changes, conservation assessments like the widely used International Union for Conservation of Nature (IUCN) Red List Criteria do not explicitly consider genetic information. Including a genetic dimension into the IUCN Red List Criteria would greatly enhance conservation efforts, because the demographic parameters traditionally considered are poor predictors of the evolutionary resilience of natural populations to global change. Here we perform the first genomic assessment of genetic diversity, gene flow, and patterns of local adaptation in tropical plant species belonging to different IUCN Red List Categories. Employing RAD-sequencing we identified tens of thousands of single-nucleotide polymorphisms in an endangered narrow-endemic and a least concern widespread morning glory (Convolvulaceae) from Amazonian savannas, a highly threatened and under-protected tropical ecosystem. Our results reveal greater genetic diversity and less spatial genetic structure in the endangered species. Whereas terrain roughness affected gene flow in both species, forested and mining areas were found to hinder gene flow in the endangered plant. Finally we implemented environmental association tests and genome scans for selection, and identified a higher proportion of candidate adaptive loci in the widespread species. These mainly contained genes related to pathogen resistance and physiological adaptations to life in nutrient-limited environments. Our study emphasizes that IUCN Red List Criteria do not always prioritize species with low genetic diversity or whose genetic variation is being affected by habitat loss and fragmentation, and calls for the inclusion of genetic information into conservation assessments. More generally, our study exemplifies how landscape genomic tools can be employed to assess the status, threats and adaptive responses of imperiled biodiversity.

9.
PLoS One ; 11(12): e0168348, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27997576

RESUMEN

Caves pose significant challenges for mining projects, since they harbor many endemic and threatened species, and must therefore be protected. Recent discussions between academia, environmental protection agencies, and industry partners, have highlighted problems with the current Brazilian legislation for the protection of caves. While the licensing process is long, complex and cumbersome, the criteria used to assign caves into conservation relevance categories are often subjective, with relevance being mainly determined by the presence of obligate cave dwellers (troglobites) and their presumed rarity. However, the rarity of these troglobitic species is questionable, as most remain unidentified to the species level and their habitats and distribution ranges are poorly known. Using data from 844 iron caves retrieved from different speleology reports for the Carajás region (South-Eastern Amazon, Brazil), one of the world's largest deposits of high-grade iron ore, we assess the influence of different cave characteristics on four biodiversity proxies (species richness, presence of troglobites, presence of rare troglobites, and presence of resident bat populations). We then examine how the current relevance classification scheme ranks caves with different biodiversity indicators. Large caves were found to be important reservoirs of biodiversity, so they should be prioritized in conservation programs. Our results also reveal spatial autocorrelation in all the biodiversity proxies assessed, indicating that iron caves should be treated as components of a cave network immersed in the karst landscape. Finally, we show that by prioritizing the conservation of rare troglobites, the current relevance classification scheme is undermining overall cave biodiversity and leaving ecologically important caves unprotected. We argue that conservation efforts should target subterranean habitats as a whole and propose an alternative relevance ranking scheme, which could help simplify the assessment process and channel more resources to the effective protection of overall cave biodiversity.


Asunto(s)
Biodiversidad , Cuevas , Conservación de los Recursos Naturales , Minería , Modelos Biológicos , Brasil
10.
Mol Ecol ; 25(21): 5345-5358, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27662098

RESUMEN

Across the globe, wild bees are threatened by ongoing natural habitat loss, risking the maintenance of plant biodiversity and agricultural production. Despite the ecological and economic importance of wild bees and the fact that several species are now managed for pollination services worldwide, little is known about how land use and beekeeping practices jointly influence gene flow. Using stingless bees as a model system, containing wild and managed species that are presumed to be particularly susceptible to habitat degradation, here we examine the main drivers of tropical bee gene flow. We employ a novel landscape genetic approach to analyse data from 135 populations of 17 stingless bee species distributed across diverse tropical biomes within the Americas. Our work has important methodological implications, as we illustrate how a maximum-likelihood approach can be applied in a meta-analysis framework to account for multiple factors, and weight estimates by sample size. In contrast to previously held beliefs, gene flow was not related to body size or deforestation, and isolation by geographic distance (IBD) was significantly affected by management, with managed species exhibiting a weaker IBD than wild ones. Our study thus reveals the critical importance of beekeeping practices in shaping the patterns of genetic differentiation across bee species. Additionally, our results show that many stingless bee species maintain high gene flow across heterogeneous landscapes. We suggest that future efforts to preserve wild tropical bees should focus on regulating beekeeping practices to maintain natural gene flow and enhancing pollinator-friendly habitats, prioritizing species showing a limited dispersal ability.


Asunto(s)
Apicultura , Abejas/genética , Flujo Génico , Genética de Población , Animales , Conservación de los Recursos Naturales , Ecosistema , Geografía , Funciones de Verosimilitud , Clima Tropical
11.
PLoS One ; 11(2): e0148295, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26882479

RESUMEN

The ecological impacts of alien species invasion are a major threat to global biodiversity. The increasing number of invasion events by alien species and the high cost and difficulty of eradicating invasive species once established require the development of new methods and tools for predicting the most susceptible areas to invasion. Invasive pollinators pose serious threats to biodiversity and human activity due to their close relationship with many plants (including crop species) and high potential competitiveness for resources with native pollinators. Although at an early stage of expansion, the bumblebee species Bombus terrestris is becoming a representative case of pollinator invasion at a global scale, particularly given its high velocity of invasive spread and the increasing number of reports of its impacts on native bees and crops in many countries. We present here a methodological framework of habitat suitability modeling that integrates new approaches for detecting habitats that are susceptible to Bombus terrestris invasion at a global scale. Our approach did not include reported invaded locations in the modeling procedure; instead, those locations were used exclusively to evaluate the accuracy of the models in predicting suitability over regions already invaded. Moreover, a new and more intuitive approach was developed to select the models and evaluate different algorithms based on their performance and predictive convergence. Finally, we present a comprehensive global map of susceptibility to Bombus terrestris invasion that highlights priority areas for monitoring.


Asunto(s)
Distribución Animal/fisiología , Abejas/fisiología , Conducta Competitiva/fisiología , Especies Introducidas , Modelos Estadísticos , Polinización/fisiología , Animales , Clima , Europa (Continente) , Japón , América Latina , Nueva Zelanda , Filogeografía
12.
PLoS One ; 10(9): e0137198, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26356234

RESUMEN

Supergeneralists, defined as species that interact with multiple groups of species in ecological networks, can act as important connectors of otherwise disconnected species subsets. In Brazil, there are two supergeneralist bees: the honeybee Apis mellifera, a non-native species, and Trigona spinipes, a native stingless bee. We compared the role of both species and the effect of geographic and local factors on networks by addressing three questions: 1) Do both species have similar abundance and interaction patterns (degree and strength) in plant-bee networks? 2) Are both species equally influential to the network structure (nestedness, connectance, and plant and bee niche overlap)? 3) How are these species affected by geographic (altitude, temperature, precipitation) and local (natural vs. disturbed habitat) factors? We analyzed 21 plant-bee weighted interaction networks, encompassing most of the main biomes in Brazil. We found no significant difference between both species in abundance, in the number of plant species with which each bee species interacts (degree), and in the sum of their dependencies (strength). Structural equation models revealed the effect of A. mellifera and T. spinipes, respectively, on the interaction network pattern (nestedness) and in the similarity in bee's interactive partners (bee niche overlap). It is most likely that the recent invasion of A. mellifera resulted in its rapid settlement inside the core of species that retain the largest number of interactions, resulting in a strong influence on nestedness. However, the long-term interaction between native T. spinipes and other bees most likely has a more direct effect on their interactive behavior. Moreover, temperature negatively affected A. mellifera bees, whereas disturbed habitats positively affected T. spinipes. Conversely, precipitation showed no effect. Being positively (T. spinipes) or indifferently (A. mellifera) affected by disturbed habitats makes these species prone to pollinate plant species in these areas, which are potentially poor in pollinators.


Asunto(s)
Abejas/fisiología , Ecosistema , Plantas , Animales , Brasil , Geografía , Modelos Teóricos , Especificidad de la Especie , Temperatura
13.
PLoS One ; 10(6): e0129225, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26091014

RESUMEN

Ecosystem services provided by mobile agents are increasingly threatened by the loss and modification of natural habitats and by climate change, risking the maintenance of biodiversity, ecosystem functions, and human welfare. Research oriented towards a better understanding of the joint effects of land use and climate change over the provision of specific ecosystem services is therefore essential to safeguard such services. Here we propose a methodological framework, which integrates species distribution forecasts and graph theory to identify key conservation areas, which if protected or restored could improve habitat connectivity and safeguard ecosystem services. We applied the proposed framework to the provision of pollination services by a tropical stingless bee (Melipona quadrifasciata), a key pollinator of native flora from the Brazilian Atlantic Forest and important agricultural crops. Based on the current distribution of this bee and that of the plant species used to feed and nest, we projected the joint distribution of bees and plants in the future, considering a moderate climate change scenario (following IPPC). We then used this information, the bee's flight range, and the current mapping of Atlantic Forest remnants to infer habitat suitability and quantify local and regional habitat connectivity for 2030, 2050 and 2080. Our results revealed north to south and coastal to inland shifts in the pollinator distribution during the next 70 years. Current and future connectivity maps unraveled the most important corridors, which if protected or restored, could facilitate the dispersal and establishment of bees during distribution shifts. Our results also suggest that coffee plantations from eastern São Paulo and southern Minas Gerais States could suffer a pollinator deficit in the future, whereas pollination services seem to be secured in southern Brazil. Landowners and governmental agencies could use this information to implement new land use schemes. Overall, our proposed methodological framework could help design novel conservational and agricultural practices that can be crucial to conserve ecosystem services by buffering the joint effect of habitat configuration and climate change.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Abejas , Brasil , Bosques , Geografía , Humanos , Polinización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...