Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
MAGMA ; 37(1): 15-25, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37702845

RESUMEN

Among the 28 reporting and data systems (RADS) available in the literature, we identified 15 RADS that can be used in Magnetic Resonance Imaging (MRI). Performing examinations without using gadolinium-based contrast agents (GBCA) has benefits, but GBCA administration is often required to achieve an early and accurate diagnosis. The aim of the present review is to summarize the current role of GBCA in MRI RADS. This overview suggests that GBCA are today required in most of the current RADS and are expected to be used in most MRIs performed in patients with cancer. Dynamic contrast enhancement is required for correct scores calculation in PI-RADS and VI-RADS, although scientific evidence may lead in the future to avoid the GBCA administration in these two RADS. In Bone-RADS, contrast enhancement can be required to classify an aggressive lesion. In RADS scoring on whole body-MRI datasets (MET-RADS-P, MY-RADS and ONCO-RADS), in NS-RADS and in Node-RADS, GBCA administration is optional thanks to the intrinsic high contrast resolution of MRI. Future studies are needed to evaluate the impact of the high T1 relaxivity GBCA on the assignment of RADS scores.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias de la Próstata , Masculino , Humanos , Imagen por Resonancia Magnética/métodos , Medios de Contraste , Gadolinio , Sistemas de Datos , Estudios Retrospectivos
2.
Adv Mater ; 36(13): e2308738, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38105299

RESUMEN

Subcutaneous (SC) administration of monoclonal antibodies (mAbs) is a proven strategy for improving therapeutic outcomes and patient compliance. The current FDA-/EMA-approved enzymatic approach, utilizing recombinant human hyaluronidase (rHuPH20) to enhance mAbs SC delivery, involves degrading the extracellular matrix's hyaluronate to increase tissue permeability. However, this method lacks tunable release properties, requiring individual optimization for each mAb. Seeking alternatives, physical polysaccharide hydrogels emerge as promising candidates due to their tunable physicochemical and biodegradability features. Unfortunately, none have demonstrated simultaneous biocompatibility, biodegradability, and controlled release properties for large proteins (≥150 kDa) after SC delivery in clinical settings. Here, a novel two-component hydrogel comprising chitosan and chitosan@DOTAGA is introduced that can be seamlessly mixed with sterile mAbs formulations initially designed for intravenous (IV) administration, repurposing them as novel tunable SC formulations. Validated in mice and nonhuman primates (NHPs) with various mAbs, including trastuzumab and rituximab, the hydrogel exhibited biodegradability and biocompatibility features. Pharmacokinetic studies in both species demonstrated tunable controlled release, surpassing the capabilities of rHuPH20, with comparable parameters to the rHuPH20+mAbs formulation. These findings signify the potential for rapid translation to human applications, opening avenues for the clinical development of this novel SC biosimilar formulation.


Asunto(s)
Anticuerpos Monoclonales , Quitosano , Humanos , Ratones , Animales , Anticuerpos Monoclonales/farmacocinética , Hidrogeles , Preparaciones de Acción Retardada , Inyecciones Subcutáneas
3.
J Am Chem Soc ; 146(1): 134-144, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38152996

RESUMEN

Gd-L1 is a macrocyclic Gd-HPDO3A derivative functionalized with a short spacer to a trisulfonated pyrene. When compared to Gd-HPDO3A, the increased relaxivity appears to be determined by both the higher molecular weight and the occurrence of an intramolecularly catalyzed prototropic exchange of the coordinated OH moiety. In water, Gd-L1 displayed a relaxivity of 7.1 mM-1 s-1 (at 298 K and 0.5 T), slightly increasing with the concentration likely due to the onset of intermolecular aggregation. A remarkably high and concentration-dependent relaxivity was measured in human serum (up to 26.5 mM-1 s-1 at the lowest tested concentration of 0.005 mM). The acquisition of 1H-nuclear magnetic relaxation dispersion (NMRD) and 17O-R2 vs T profiles allowed to get an in-depth characterization of the system. In vitro experiments in the presence of human serum albumin, γ-globulins, and polylysine, as well as using media mimicking the extracellular matrix, provided strong support to the view that the trisulfonated pyrene fosters binding interactions with the exposed positive groups on the surface of proteins, responsible for a remarkable in vivo hyperintensity in T1w MR images. The in vivo MR images of the liver, kidneys, and spleen showed a marked contrast enhancement in the first 10 min after the i.v. injection of Gd-L1, which was 2-6-fold higher than that for Gd-HPDO3A, while maintaining a very similar excretion behavior. These findings may pave the way to an improved design of MRI GBCAs, for the first time, based on the setup of weak and dynamic interactions with abundant positive groups on serum and ECM proteins.


Asunto(s)
Medios de Contraste , Compuestos Heterocíclicos , Compuestos Organometálicos , Humanos , Medios de Contraste/química , Electricidad Estática , Imagen por Resonancia Magnética/métodos , Compuestos Organometálicos/química , Pirenos , Gadolinio
4.
J Org Chem ; 88(11): 6588-6598, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37155983

RESUMEN

Cyclic peptoids are macrocyclic oligomers of N-substituted glycines with specific folding abilities and excellent metal binding properties. In this work, we show how strategic positioning of chiral (S)- and (R)-(1-carboxyethyl)glycine units influences the conformational stability of water-soluble macrocyclic peptoids as sodium complexes. The reported results are based on nuclear magnetic resonance spectroscopy, extensive computational studies, and X-ray diffraction analysis using single crystals grown from aqueous solutions. The studies include 1H relaxometric investigations of hexameric cyclic peptoids in the presence of the Gd3+ ion to assess their thermodynamic stabilities and relaxivities.

5.
Invest Radiol ; 58(8): 530-538, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37185158

RESUMEN

OBJECTIVES: The aim of this study was to summarize the current preclinical and clinical evidence on the association between exposure to gadolinium (Gd) compounds and skin toxicity in a setting similar to clinical practice. MATERIALS AND METHODS: A search of MEDLINE and PubMed references from January 2000 to December 2022 was performed using keywords related to gadolinium deposition and its effects on the skin, such as "gadolinium," "gadolinium-based contrast agents," "skin," "deposition," and "toxicity." In addition, cross-referencing was added when appropriate. For preclinical in vitro studies, we included all the studies that analyzed the response of human dermal fibroblasts to exposure to various gadolinium compounds. For preclinical animal studies and clinical studies, we included only those that analyzed animals or patients with preserved renal function (estimated glomerular filtration rate >30 mL/min/1.73 m 2 ), using a dosage of gadolinium-based contrast agents (GBCAs) similar to that commonly applied (0.1 mmol/kg). RESULTS: Forty studies were selected. Preclinical findings suggest that Gd compounds can produce profibrotic responses in the skin in vitro, through the activation and proliferation of dermal fibroblasts and promoting their myofibroblast differentiation. Gadolinium influences the process of collagen production and the collagen content of skin, by increasing the levels of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1. Preclinical animal studies show that Gd can deposit in the skin with higher concentrations when linear GBCAs are applied. However, these deposits decrease over time and are not associated with obvious macroscopic or histological modifications. The clinical relevance of GBCAs in inducing small fiber neuropathy remains to be determined. Clinical studies show that Gd is detectable in the skin and hair of subjects with normal renal function in higher concentrations after intravenous administration of linear compared with macrocyclic GBCA. However, these deposits decrease over time and are not associated with cutaneous or histological modifications. Also, subclinical dermal involvement related to linear GBCA exposure may be detectable on brain MRI. There is no conclusive evidence to support a causal relationship between GBCA administration at the clinical dose and cutaneous manifestations in patients with normal renal function. CONCLUSIONS: Gadolinium can produce profibrotic responses in the skin, especially acting on fibroblasts, as shown by preclinical in vitro studies. Gadolinium deposits are detectable in the skin even in subjects with normal renal function with higher concentrations when linear GBCAs are used, as confirmed by both preclinical animal and human studies. There is no proof to date of a cause-effect relationship between GBCA administration at clinical doses and cutaneous consequences in patients with normal renal function. Multiple factors, yet to be determined, should be considered for sporadic patients with normal renal function who develop clinical skin manifestations temporally related to GBCA administration.


Asunto(s)
Compuestos Organometálicos , Enfermedades de la Piel , Animales , Humanos , Medios de Contraste/toxicidad , Gadolinio DTPA , Gadolinio/toxicidad , Inhibidor Tisular de Metaloproteinasa-1 , Enfermedades de la Piel/inducido químicamente , Imagen por Resonancia Magnética , Riñón/diagnóstico por imagen , Riñón/fisiología , Encéfalo
6.
Analyst ; 148(11): 2415-2424, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37092509

RESUMEN

Gadolinium-based contrast agents (GBCAs) are massively employed in radiology to increase the diagnostic power of MRI. However, investigations aiming at detecting possible metabolic perturbations or adverse health effects due to gadolinium deposition are still lacking. In this work, aqueous organs extract and plasma samples were analyzed by GC-MS and 1H-NMR, respectively, to investigate the effects of multiple administrations of one linear (Omniscan) and one macrocyclic (ProHance) GBCA, on the main metabolic pathways in healthy mice. Multivariate analysis revealed that plasma metabolome was not differently perturbed by the two GBCAs, while, the multiorgan analysis displayed a clear separation of the Omniscan-treated from the control and the ProHance-treated groups. Interestingly, the most affected organs were the brain, cerebellum and liver. Thus, this work paves the way to both the safest use of the commercially available GBCAs and the development of new GBCAs characterized by lower general toxicity.


Asunto(s)
Gadolinio , Compuestos Organometálicos , Ratones , Animales , Gadolinio/toxicidad , Gadolinio/metabolismo , Gadolinio DTPA/metabolismo , Compuestos Organometálicos/toxicidad , Medios de Contraste/toxicidad , Medios de Contraste/metabolismo , Encéfalo/metabolismo , Imagen por Resonancia Magnética
7.
Gels ; 8(12)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36547355

RESUMEN

Generated by a hierarchical and multiscale self-assembling phenomenon, peptide-based hydrogels (HGs) are soft materials useful for a variety of applications. Short and ultra-short peptides are intriguing building blocks for hydrogel fabrication. These matrices can also be obtained by mixing low-molecular-weight peptides with other chemical entities (e.g., polymers, other peptides). The combination of two or more constituents opens the door to the development of hybrid systems with tunable mechanical properties and unexpected biofunctionalities or morphologies. For this scope, the formulation, the multiscale analysis, and the supramolecular characterization of novel hybrid peptide-polymer hydrogels are herein described. The proposed matrices contain the Fmoc-FF (Nα-fluorenylmethyloxycarbonyl diphenylalanine) hydrogelator at a concentration of 0.5 wt% (5.0 mg/mL) and a diacrylate α-/ω-substituted polyethylene-glycol derivative (PEGDA). Two PEGDA derivatives, PEGDA 1 and PEGDA2 (mean molecular weights of 575 and 250 Da, respectively), are mixed with Fmoc-FF at different ratios (Fmoc-FF/PEGDA at 1/1, 1/2, 1/5, 1/10 mol/mol). All the multicomponent hybrid peptide-polymer hydrogels are scrutinized with a large panel of analytical techniques (including proton relaxometry, FTIR, WAXS, rheometry, and scanning electronic microscopy). The matrices were found to be able to generate mechanical responses in the 2-8 kPa range, producing a panel of tunable materials with the same chemical composition. The release of a model drug (Naphthol Yellow S) is reported too. The tunable features, the different topologies, and the versatility of the proposed materials open the door to the development of tools for different applicative areas, including diagnostics, liquid biopsies and responsive materials. The incorporation of a diacrylate function also suggests the possible development of interpenetrating networks upon cross-linking reactions. All the collected data allow a mutual comparison between the different matrices, thus confirming the significance of the hybrid peptide/polymer-based methodology as a strategy for the design of innovative materials.

8.
Macromol Biosci ; 22(7): e2200128, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35524744

RESUMEN

In the last years, peptide-based hydrogels are being increasingly used as suitable matrices for biomedical and pharmaceutical applications, including drug delivery and tissue engineering. Recently, the synthesis and the gelation properties of a small library of cationic peptides, containing a Lys residue at the C-terminus and derivatized with an Fmoc group or with the fluorenyl methoxycarbonyl-diphenylalanine (FmocFF) at the N-terminus are derived. Here, it is demonstrated that the combination of these peptides with the well-known hydrogelator FmocFF, in different weight/weight ratios, allows the achievement of seven novel self-sorted hydrogels, which share similar peptide organization of their supramolecular matrix. Rheological and relaxometric characterization highlight a different mechanical rigidity and water mobility in the gels as demonstrated by the storage modulus values (200 Pa < G' < 35 000 Pa) and by relaxometry, respectively. In vitro studies demonstrate that most of the tested mixed hydrogels do not disturb significantly the cell viability (>95%) over 72 h of treatment. Moreover, in virtue to its capability to strongly favor adhesion, spreading and duplication of 3T3-L1 cells, one of the tested hydrogel may be eligible as synthetic extracellular matrix.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Dipéptidos , Fluorenos , Hidrogeles/química , Péptidos/química , Fenilalanina
9.
Magn Reson Med ; 88(1): 357-364, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35253921

RESUMEN

PURPOSE: This work aims to investigate the supramolecular binding interactions that occur between iodinated X-ray contrast agents (CAs) and macrocyclic gadolinium (Gd)-based MRI contrast agents (GBCAs). This study provides some new insights in the renal excretion pathways of the two types of imaging probes. METHODS: The water-proton relaxivities (r1 ) of clinically approved macrocyclic and linear GBCAs have been measured in the presence of different iodinated X-ray contrast agents at different magnetic field strengths in buffer and in serum. The in vivo MRI and X-ray CT of mice injected with either Gd-HPDO3A or a Gd-HPDO3A + iodixanol mixture were then acquired to assess the biodistribution of the two probes. RESULTS: A significant increase in r1 (up to approximately 200%) was observed for macrocyclic GBCAs when measured in the presence of an excess of iodinated X-ray CAs (1:100 mol:mol) in serum. The co-administration of Gd-HPDO3A and iodixanol in vivo resulted in a marked increase in the signal intensity of the kidney regions in T1 -weighted MR images. Moreover, the co-presence of the two agents resulted in the extended persistence of the MRI signal enhancement, suggesting that the Gd-HPDO3A/iodixanol adduct was eliminated more slowly than the typical washing out of Gd-HPDO3A. CONCLUSIONS: The reported results show that it is possible to detect the co-presence of iodinated agents and macrocyclic GBCAs in contrast-enhanced MR images. The new information may be useful in the design of novel experiments toward improved diagnostic outcomes.


Asunto(s)
Medios de Contraste , Compuestos Organometálicos , Animales , Medios de Contraste/química , Gadolinio , Compuestos Heterocíclicos , Imagen por Resonancia Magnética/métodos , Ratones , Compuestos Organometálicos/metabolismo , Eliminación Renal , Distribución Tisular , Ácidos Triyodobenzoicos , Rayos X
10.
J Trace Elem Med Biol ; 68: 126831, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34364067

RESUMEN

OBJECTIVES: The aim of this study is to quantitatively investigate, at the preclinical level, the extent of Gd retention in the CNS, and peripheral organs, of immune-mediated murine models (Experimental Autoimmune Encephalomyelitis -EAE) of Multiple Sclerosis, compared to control animals, upon the injection of gadodiamide. The influence of the Gadolinium Based Contrast Agent administration timing during the course of EAE development is also monitored. METHODS: EAE mice were injected with three doses (1.2 mmol/kg each) of gadodiamide at three different time points during the EAE development and sacrificed after 21 or 39 days. Organs were collected and the amount of Gd was quantified through Inductively Coupled Plasma-Mass Spectrometry. Transmission electron microscopy (TEM) and MRI techniques were applied to add spatial and qualitative information to the obtained results. RESULTS: In the spinal cord of EAE group, 21 days after gadodiamide administration, a significantly higher accumulation of Gd occurred. Conversely, in the encephalon, a lower amount of Gd retention was reached, even if differences emerged between EAE and controls mice. After 39 days, the amounts of retained Gd markedly decreased. TEM validated the presence of Gd in CNS. MRI of the encephalon at 7.1T did not highlight any hyper intense region. CONCLUSION: In the spinal cord of EAE mice, which is the mostly damaged region in this specific animal model, a preferential but transient accumulation of Gd is observed. In the encephalon, the Gd retention could be mostly related to inflammation occurring upon immunization rather than to demyelination.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Compuestos Organometálicos , Animales , Modelos Animales de Enfermedad , Gadolinio , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/diagnóstico por imagen
11.
J Am Chem Soc ; 143(35): 14178-14188, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34432442

RESUMEN

The search for alternatives to Gd-containing magnetic resonance imaging (MRI) contrast agents addresses the field of Fe(III)-bearing species with the expectation that the use of an essential metal ion may avoid the issues raised by the exogenous Gd. Attention is currently devoted to highly stable Fe(III) complexes with hexacoordinating ligands, although they may lack any coordinated water molecule. We found that the hexacoordinated Fe(III) complex with two units of deferasirox, a largely used iron sequestering agent, owns properties that can make it a viable alternative to Gd-based agents. Fe(deferasirox)2 displays an outstanding thermodynamic stability, a high binding affinity to human serum albumin (three molecules of complex are simultaneously bound to the protein), and a good relaxivity that increases in the range 20-80 MHz. The relaxation enhancement is due to second sphere water molecules likely forming H-bonds with the coordinating phenoxide oxygens. A further enhancement was observed upon the formation of the supramolecular adduct with albumin. The binding sites of Fe(deferasirox)2 on albumin were characterized by relaxometric competitive assays. Preliminary in vivo imaging studies on a tumor-bearing mouse model indicate that, on a 3 T MRI scanner, the contrast ability of Fe(deferasirox)2 is comparable to the one shown by the commercial Gd(DTPA) agent. ICP-MS analyses on blood samples withdrawn from healthy mice administered with a dose of 0.1 mmol/kg of Fe(deferasirox)2 showed that the complex is completely removed in 24 h.


Asunto(s)
Medios de Contraste/química , Complejos de Coordinación/química , Deferasirox/análogos & derivados , Animales , Sitios de Unión , Línea Celular Tumoral , Medios de Contraste/metabolismo , Medios de Contraste/farmacocinética , Complejos de Coordinación/metabolismo , Complejos de Coordinación/farmacocinética , Deferasirox/metabolismo , Deferasirox/farmacocinética , Femenino , Humanos , Hierro/química , Imagen por Resonancia Magnética , Ratones Endogámicos BALB C , Unión Proteica , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo
12.
Chemistry ; 27(5): 1849-1859, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33184913

RESUMEN

Herein, the synthesis and an extensive characterization of two novel Gd(AAZTA) (AAZTA=6-amino-6-methylperhydro-1,4-diazepine tetra acetic acid) derivatives functionalized with short (C2 and C4 ) n-alkyl acid functions are reported. The carboxylate functionality is the site for further conjugations for the design of more specific contrast agents (CAs). Interestingly, it has been found that the synthesized complexes display enhanced properties for use as MRI contrast agents on their own. The stability constants determined by using potentiometric titration and UV/Vis spectrophotometry were slightly higher than the one reported for the parent Gd(AAZTA) complex. This observation might be accounted for by the larger sigma-electron donation of the acyl substituents with respect to the one provided by the methyl group in the parent complex. As far as concerns the kinetic stability, transmetallation experiments with endogenous ions (e.g. Cu2+ ) implied that the Gd3+ ions present in these Gd(AAZTA) derivatives show somewhat smaller susceptibility to chemical exchange towards these ions at 25 °C, close to the physiological condition. The 1 H NMR spectra of the complexes with EuIII and YbIII displayed a set of signals consistent with half the number of methylene protons present on each ligand. The number of resonances was invariant over a large range of temperatures, suggesting the occurrence of a fast interconversion between structural isomers. The relaxivity values (298 K, 20 MHz) were consistent with q=2 being equal to 8.8 mm-1 s-1 for the C2 derivative and 9.4 mm-1 s-1 for the C4 one, that is, sensibly larger than the one reported for Gd(AAZTA) (7.1 mm-1 s-1 ). Variable-temperature (VT)-T2 17 O NMR measurements showed, for both complexes, the presence of two populations of coordinated water molecules, one in fast and one in slow exchange with the bulk water. As the high-resolution 1 H NMR spectra of the analogs with EuIII and YbIII did not show the occurrence of distinct isomers (as frequently observed in other macrocyclic lanthanide(III)-containing complexes), we surmised the presence of two fast-interconverting isomers in solution. The analysis of the 17 O NMR VT-T2 profiles versus temperature allowed their relative molar fraction to be established as 35 % for the isomer with the fast exchanging water and 65 % for the isomer with the water molecules in slower exchange. Finally, 1 H NMRD profiles over an extended range of applied magnetic field strengths have been satisfactory fitted on the basis of the occurrence of the two interconverting species.


Asunto(s)
Medios de Contraste/química , Gadolinio/química , Imagen por Resonancia Magnética/métodos , Compuestos Organometálicos/química , Protones
13.
PLoS One ; 15(9): e0224414, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32931488

RESUMEN

PROCEDURES: To preliminary assess the relationship between Manganese Enhanced Magnetic Resonance Imaging (MEMRI) and the expression of calcium receptors in human prostate and breast cancer animal models. METHODS: NOD/SCID mice were inoculated with MDA-MB-231 breast cancer cells and prostate PC3 cancer cells to develop orthotopic or pseudometastatic cancer animal models. Mice were studied on a clinical 3T scanner by using a prototype birdcage coil before and after intravenous injection of MnCl2. Assessment of receptor's status was carried out after the MR images acquisition by immunohistochemistry on excised tumours. RESULTS: Manganese contrast enhancement in breast or prostate cancer animal models well correlated with CaSR expression (p<0.01), whereas TRPV6 expression levels appeared not relevant to the Mn uptake. CONCLUSION: Our preliminary results suggest that MEMRI appears an efficient tool to characterize human breast and prostate cancer animal models in the presence of different expression level of calcium receptors.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Cloruros/administración & dosificación , Medios de Contraste/administración & dosificación , Imagen por Resonancia Magnética/métodos , Compuestos de Manganeso/administración & dosificación , Neoplasias de la Próstata/diagnóstico por imagen , Animales , Neoplasias de la Mama/patología , Calcio/metabolismo , Línea Celular Tumoral , Cloruros/farmacocinética , Medios de Contraste/farmacocinética , Estudios de Factibilidad , Femenino , Humanos , Inmunohistoquímica , Inyecciones Intravenosas , Masculino , Compuestos de Manganeso/farmacocinética , Ratones , Proyectos Piloto , Neoplasias de la Próstata/patología , Receptores Sensibles al Calcio/metabolismo , Canales Catiónicos TRPV/metabolismo , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Magn Reson Med ; 84(6): 3366-3378, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32602953

RESUMEN

PURPOSE: Malaria is a global health problem with the most malignant form caused by Plasmodium falciparum (P. falciparum). Parasite maturation in red blood cells (RBCs) is accompanied by changes including the formation of paramagnetic hemozoin (HZ) nanocrystals, and increased metabolism and variation in membrane lipid composition. Herein, MR relaxometry (MRR) was applied to investigate water exchange across RBCs' membrane and HZ formation in parasitized RBCs. METHODS: Transverse water protons relaxation rate constants (R2 = 1/T2 ) were measured for assessing HZ formation in P. falciparum-parasitized human RBCs. Moreover, water exchange lifetimes across the RBC membrane (τi ) were assessed by measuring longitudinal relaxation rate constants (R1 = 1/T1 ) at 21.5 MHz in the presence of a gadolinium complex dissolved in the suspension medium. RESULTS: τi increased after invasion of parasites (ring stage, mean τi / τi0 = 1.234 ± 0.022) and decreased during maturation to late trophozoite (mean τi / τi0 = 0.960 ± 0.075) and schizont stages (mean τi / τi0 = 1.019 ± 0.065). The HZ accumulation in advanced stages was revealed by T2 -shortening. The curves reporting R2 (1/T2 ) vs. magnetic field showed different slopes for non-parasitized RBCs (npRBCs) and parasitized RBCs (pRBCs), namely 0.003 ± 0.001 for npRBCs, 0.009 ± 0.002, 0.028 ± 0.004 and 0.055 ± 0.002 for pRBCs at ring-, early trophozoite-, and late trophozoite stage, respectively. Antimalarial molecules dihydroartemisinin and chloroquine elicited measurable changes in parasitized RBCs, namely dihydroartemisinin modified τi , whereas the interference of chloroquine with HZ formation was detectable by a significant T2 increase. CONCLUSIONS: MRR can be considered a useful tool for reporting on P. falciparum blood stages and for screening potential antimalarial molecules.


Asunto(s)
Antimaláricos , Malaria Falciparum , Eritrocitos , Humanos , Plasmodium falciparum , Suspensiones
15.
Chemistry ; 26(27): 6056-6063, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32133687

RESUMEN

The properties of LnIII -HPDO3A complexes as relaxation enhancers and paraCEST agents are essentially related to the hydroxylpropyl moiety. A series of three HPDO3A derivatives, with small modifications to the hydroxyl arm, were herein investigated to understand how heightened control can be gained over the parameters involved in the design of these agents. A full 1 H and 17 O-NMR relaxometric analysis was conducted and demonstrated that increasing the length of the OH group from the lanthanide centre significantly enhanced the water exchange rate of the gadolinium complex, but with a subsequent reduction in kinetic stability. Alternatively, the introduction of an additional methyl group, which increased the steric bulk around the OH moiety, resulted in the formation of almost exclusively the TSAP isomer (95 %) as identified by 1 H-NMR of the europium complex. The gadolinium analogue of this complex also exhibited a very fast water exchange rate, but with no detectable loss of kinetic stability. This complex therefore demonstrates a notable improvement over Gd-HPDO3A.


Asunto(s)
Medios de Contraste/química , Gadolinio/química , Elementos de la Serie de los Lantanoides/química , Imagen por Resonancia Magnética/métodos , Europio/química , Compuestos Heterocíclicos/química , Cinética , Compuestos Organometálicos/química , Agua
16.
Pharmaceuticals (Basel) ; 13(2)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31973215

RESUMEN

: Poly-aromatic peptide sequences are able to self-assemble into a variety of supramolecular aggregates such as fibers, hydrogels, and tree-like multi-branched nanostructures. Due to their biocompatible nature, these peptide nanostructures have been proposed for several applications in biology and nanomedicine (tissue engineering, drug delivery, bioimaging, and fabrication of biosensors). Here we report the synthesis, the structural characterization and the relaxometric behavior of two novel supramolecular diagnostic agents for magnetic resonance imaging (MRI) technique. These diagnostic agents are obtained for self-assembly of DTPA(Gd)-PEG8-(FY)3 or DOTA(Gd)-PEG8-(FY)3 peptide conjugates, in which the Gd-complexes are linked at the N-terminus of the PEG8-(FY)3 polymer peptide. This latter was previously found able to form self-supporting and stable soft hydrogels at a concentration of 1.0% wt. Analogously, also DTPA(Gd)-PEG8-(FY)3 and DOTA(Gd)-PEG8-(FY)3 exhibit the trend to gelificate at the same range of concentration. Moreover, the structural characterization points out that peptide (FY)3 moiety keeps its capability to arrange into ß-sheet structures with an antiparallel orientation of the ß-strands. The high relaxivity value of these nanostructures (~12 mM-1·s-1 at 20 MHz) and the very low in vitro cytotoxicity suggest their potential application as supramolecular diagnostic agents for MRI.

17.
Chem Sci ; 12(4): 1368-1377, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34163900

RESUMEN

The set-up of reversible binding interactions between the hydrophobic region of macrocyclic GBCAs (Gadolinium Based Contrast Agents) and SO3 -/OH containing pyrene derivatives provides new insights for pursuing relaxivity enhancements of this class of MRI contrast agents. The strong binding affinity allows attaining relaxation enhancements up to 50% at pyrene/GBCA ratios of 3 : 1. High resolution NMR spectra of the Yb-HPDO3A/pyrene system fully support the formation of a supramolecular adduct based on the set-up of hydrophobic interactions. The relaxation enhancement may be accounted for in terms of the increase of the molecular reorientation time (τ R) and the number of second sphere water molecules. This effect is maintained in blood serum and in vivo, as shown by the enhancement of contrast in T 1w-MR images obtained by simultaneous injection of GBCA and pyrene derivatives in mice.

18.
Invest Radiol ; 55(1): 30-37, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31503081

RESUMEN

OBJECTIVES: Being administered intravenously, the tissue that gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging mostly encounter is blood. Herein, it has been investigated how much Gd is internalized by cellular blood components upon the in vitro incubation of GBCAs in human blood or upon intravenous administration of GBCAs to healthy mice. We report results that show how the superb sensitivity of inductively coupled plasma-mass spectrometry (ICP-MS) allows the detection of very tiny amounts of GBCAs entering red blood cells (RBCs) and white blood cells (WBCs). This finding may introduce new insights in the complex matter relative to excretion and retention pathway of administered GBCAs. MATERIALS AND METHODS: The study was tackled by 2 independent approaches. First, human blood was incubated in vitro with 5 mM of GBCAs (gadoteridol, gadobenate dimeglumine, gadodiamide, and gadopentetate dimeglumine) for variable times (30 minutes, 1 hour, 2 hours, and 3 hours) at 37°C. Then, blood cell components were isolated by using the Ficoll Histopaque method, washed 3 times, mineralized, and analyzed by ICP-MS for total Gd quantification. Furthermore, blood components derived from human blood incubated with gadodiamide or gadoteridol underwent UPLC-MS (ultra performance liquid chromatography-mass spectrometry) analysis for determination of the amount of intact Gd-DTPA-BMA and Gd-HPDO3A. Second, the distribution of Gd in the blood components of healthy CD-1 mice was administered intravenously with a single dose (1.2 mmol/kg) of gadodiamide or gadoteridol. Blood samples were separated and processed at different time points (24 hours, 48 hours, 96 hours, and 10 days after GBCA administration). As for human blood, ICP-MS quantification of total Gd and UPLC-MS determination of the amount of intact GBCAs were carried out. RESULTS: The amount of Gd taken up by RBCs and WBCs was well detectable by ICP-MS. The GBCAs seem to be able to cross the membrane by diffusion (RBCs) or, possibly, by macropinocytosis (WBCs). Ex vivo studies allowed it to be established that the structure of the different GBCAs were not relevant to determine the amount of Gd internalized in the cells. Although the amount of Gd steadily decreases over time in gadoteridol-labeled cells, in the case of gadodiamide, the amount of Gd in the cells does not decrease (even 10 days after the administration of the GBCA). Moreover, while gadoteridol maintains its structural integrity upon cellular uptake, in the case of gadodiamide, the amount of intact complex markedly decreases over time. CONCLUSIONS: The detection of significant amounts of Gd in RBCs and WBCs indicates that GBCAs can cross blood cell membranes. This finding may play a role in our understanding of the processes that are at the basis of Gd retention in the tissues of patients who have received the administration of GBCAs.


Asunto(s)
Medios de Contraste/farmacocinética , Eritrocitos/metabolismo , Gadolinio/farmacocinética , Leucocitos/metabolismo , Imagen por Resonancia Magnética , Animales , Medios de Contraste/administración & dosificación , Gadolinio/administración & dosificación , Gadolinio DTPA/administración & dosificación , Gadolinio DTPA/farmacocinética , Compuestos Heterocíclicos/administración & dosificación , Compuestos Heterocíclicos/farmacocinética , Humanos , Técnicas In Vitro , Masculino , Meglumina/administración & dosificación , Meglumina/análogos & derivados , Meglumina/farmacocinética , Ratones , Modelos Animales , Compuestos Organometálicos/administración & dosificación , Compuestos Organometálicos/farmacocinética , Espectrofotometría Atómica/métodos
19.
Sci Rep ; 9(1): 4624, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30874603

RESUMEN

Breast Cancer is the most diffuse cancer among women and the treatment outcome is largely determined by its early detection. MRI at fixed magnetic field is already widely used for cancer detection. Herein it is shown that the acquisition of proton T1 at different magnetic fields adds further advantages. In fact, Fast Field Cycling Nuclear Magnetic Resonance Dispersion (FFC-NMRD) profiles have been shown to act as a high -sensitivity tool for cancer detection and staging in ex vivo murine breast tissues collected from Balb/NeuT mice. From NMRD profiles it was possible to extract two new cancer biomarkers, namely: (i) the appearance of 14N-quadrupolar peaks (QPs) reporting on tumor onset and (ii) the slope of the NMRD profile reporting on the progression of the tumor. By this approach it was possible to detect the presence of tumor in transgenic NeuT mice at a very early stage (5-7 weeks), when the disease is not yet detectable by using conventional high field (7 T) MRI and only minimal abnormalities are present in histological assays. These results show that, NMRD profiles may represent a useful tool for early breast cancer detection and for getting more insight into an accurate tumor phenotyping, highlighting changes in composition of the mammary gland tissue (lipids/proteins/water) occurring during the development of the neoplasia.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Detección Precoz del Cáncer/métodos , Imagen por Resonancia Magnética/métodos , Animales , Medios de Contraste , Femenino , Espectroscopía de Resonancia Magnética/métodos , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Protones
20.
J Pept Sci ; 25(5): e3157, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30767370

RESUMEN

Magnetic resonance imaging (MRI) is one of the most important clinic diagnostic tool used to obtain high-quality body images. The administration of low-molecular-weight Gd complex-based MRI contrast agents (CAs) permits to increase the 1 H relaxation rate of nearby water molecules, thus modulating signal intensity and contrast enhancement. Even if highly accurate, MRI modality suffers from its low sensitivity. Moreover, low-molecular-weight CAs rapidly equilibrate between the intravascular and extravascular spaces after their administration. In order to improve their sensitivity and limit the extravasation phenomenon, several macromolecular and supramolecular multimeric gadolinium complexes (dendrimers, polymers, carbon nanostructures, micelles, and liposomes) have been designed until now. Because of their biocompatibility, low immunogenicity, low cost, and easy synthetic modification, peptides are attractive building blocks for the fabbrication of novel materials for biomedical applications. We report on the state of the art of supramolecular CAs obtained by self-assembly of three different classes of building blocks containing a peptide sequence, a gadolinium complex, and, if necessary, a third functional portion achieving the organization process.


Asunto(s)
Medios de Contraste/química , Gadolinio/química , Imagen por Resonancia Magnética , Péptidos/química , Medios de Contraste/síntesis química , Humanos , Sustancias Macromoleculares , Micelas , Péptidos/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...