Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
ACS Sens ; 9(2): 555-576, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38305121

RESUMEN

Sensitive, accurate, and reliable detection of explosives has become one of the major needs for international security and environmental protection. Colloidal quantum dots, because of their unique chemical, optical, and electrical properties, as well as easy synthesis route and functionalization, have demonstrated high potential to meet the requirements for the development of suitable sensors, boosting the research in the field of explosive detection. Here, we critically review the most relevant research works, highlighting three different mechanisms for explosive detection based on colloidal quantum dots, namely photoluminescence, electrochemical, and chemoresistive sensing. We provide a comprehensive overview and an extensive discussion and comparison in terms of the most relevant sensor parameters. We highlight advantages, limitations, and challenges of quantum dot-based explosive sensors and outline future research directions for the advancement of knowledge in this surging research field.


Asunto(s)
Sustancias Explosivas , Puntos Cuánticos , Puntos Cuánticos/química
2.
Nanoscale ; 15(16): 7410-7419, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-36976580

RESUMEN

Synthesis protocols of colloidal semiconductor nanocrystals (NCs) comprise the coordination of the semiconductive inorganic core by a layer of organic ligands, which play a crucial role in stabilizing the NCs in organic solvents. Understanding the distribution, binding and mobility of ligands on the different NC facets is key to prevent the formation of surface defects and to optimize the overall optoelectronic efficiency of these materials. In this paper, we employed classical molecular dynamics (MD) simulations to shed light on the plausible locations, binding modes and mobilities of carboxylate ligands on the different facets of CdSe nanocrystals. Our results suggest that these features are influenced by the temperature of the system and the coordination number of the surface (Cd and Se) atoms. High ligand mobilities and structural rearrangements are linked to a low coordination of the Cd atoms. Undercoordinated Se atoms, which are considered the culprit of hole trap states in the bandgap of the material, are instead found to spontaneously form on the nanosecond timescale, making them likely candidates for an efficient photoluminescence quenching mechanism.

3.
Nanotechnology ; 33(47)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35944493

RESUMEN

We report on a sensor architecture for detection of hazardous gases. The proposed device is based on the integration of a solid-state quantum dot (QD) photoluminescent probe with a QD photodetector on the same substrate. The effectiveness of the approach is demonstrated by developing a compact optical sensor for trace detection of explosives in air. The proposed architecture is very simple and consists of a silicon substrate with both surfaces coated with QD films. The upper layer acts as photoluminescent probe, pumped by a blue LED. The change of photoluminescence intensity associated to the interaction between the QDs and the target analyte is measured by the QD photodetector fabricated on the opposite side of the substrate. The sensor is mounted into a small chamber provided with the LED and the front-end electronics. The device is characterized by using nitrobenzene as representative nitroaromatic compound. Extremely low concentrations (down to 0.1 ppm) can be detected by the proposed device, with a theoretical detection limit estimated to be as low as 2 ppb. Results are repeatable and no ageing effect is observed over a 70 d period. The proposed architecture may provide a promising solution for explosive detection in air as well as other sensing applications, thanks to its sensitivity, simple fabrication process, practical usability and cost effectiveness.

4.
Angew Chem Int Ed Engl ; 61(22): e202201747, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35226780

RESUMEN

Here we present a colloidal approach to synthesize bismuth chalcohalide nanocrystals (BiEX NCs, in which E=S, Se and X=Cl, Br, I). Our method yields orthorhombic elongated BiEX NCs, with BiSCl crystallizing in a previously unknown polymorph. The BiEX NCs display a composition-dependent band gap spanning the visible spectral range and absorption coefficients exceeding 105  cm-1 . The BiEX NCs show chemical stability at standard laboratory conditions and form colloidal inks in different solvents. These features enable the solution processing of the NCs into robust solid films yielding stable photoelectrochemical current densities under solar-simulated irradiation. Overall, our versatile synthetic protocol may prove valuable in accessing colloidal metal chalcohalide nanomaterials at large and contributes to establish metal chalcohalides as a promising complement to metal chalcogenides and halides for applied nanotechnology.

5.
Biomolecules ; 12(2)2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35204780

RESUMEN

Many causal mechanisms in sepsis susceptibility are largely unknown and the functional genetic polymorphisms (GP) of matrix metalloproteinases (MMPs) and their natural tissue inhibitor of MMPs (TIMP1) could play a role in its development. GPs of MMPs and TIMP (namely MMP-1 rs1799750, MMP-3 rs3025058, MMP-8 rs11225395, MMP-9 rs2234681, and TIMP-1 rs4898) have been compared in 1058 patients with suspected sepsis to assess the association with susceptibility and etiology of sepsis. Prevalence of MMP8 rs11225395 G/G genotype was higher in sepsis patients than in those with non-infective Systemic Inflammatory Reaction Syndrome (35.6 vs. 26%, hazard ratio, HR 1.56, 95% C.I. 1.04-2.42, p = 0.032). G/G patients developed less hyperthermia (p = 0.041), even after stratification for disease severity (p = 0.003). Patients carrying the 6A allele in MMP3 rs3025058 had a higher probability of microbiologically-proven sepsis (HR 1.4. 95%C.I. 1.01-1.94, p = 0.044), particularly when due to virus (H.R. 2.14, 95% C.I. 1.06-4.31, p = 0.046), while MMP-1 G/G genotype patients carried a higher risk for intracellular bacteria (Chlamydia, Mycoplasma, and Legionella, H.R. 6.46, 95% C.I. 1.58-26.41, p = 0.003). Neither severity of sepsis at presentation, nor 30-day mortality were influenced by the investigated variants or their haplotype. MMP8 rs11225395 G/G carriers have lower temperature at presentation and a more than 50% increased susceptibility to sepsis. Among patients with sepsis, carriers of MMP1 rs1799750 G/G have an increased susceptibility for intracellular pathogen infections, while virus serology is more often positive in those with the MMP3 rs3025058 A/A genotype.


Asunto(s)
Predisposición Genética a la Enfermedad , Sepsis , Estudios de Casos y Controles , Frecuencia de los Genes , Genotipo , Humanos , Polimorfismo de Nucleótido Simple , Sepsis/genética
6.
Chemistry ; 27(58): 14359-14369, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34351015

RESUMEN

At the size scale at which quantum confinement effects arise in inorganic semiconductors, the materials' surface-to-volume ratio is intrinsically high. This consideration sets surface chemistry as a powerful tool to exert further control on the electronic structure of the inorganic semiconductors. Among the materials that experience the quantum confinement regime, those prepared via colloidal synthetic procedures (the colloidal quantum dots - and wires and wells, too -) are prone to undergo surface reactions in the solution phase and thus represent an ideal framework to study the ensemble impact of surface chemistry on the materials' electronic structure. It is here discussed such an impact at the ground state by using the absorption spectrum of the colloidal quantum dots as a descriptor. The experiments show that the chemical species (the ligands) at the colloidal quantum dot surface induce changes to the optical band gap, the absorption coefficient at all wavelengths, and the ionization potential. These evidences point to a description of the colloidal quantum dot (the ligand/core adduct) as an indecomposable species, in which the orbitals localized on the ligands and the core mix in each other's electric field. This description goes beyond conventional models that conceive the ligands on the basis of pure electrostatic arguments (i. e., either as a dielectric shell or as electric dipoles) or as a mere potential energy barrier at the core boundaries.

7.
ACS Nano ; 15(1): 650-664, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33350811

RESUMEN

Excitonic coupling, electronic coupling, and cooperative interactions in self-assembled lead halide perovskite nanocrystals were reported to give rise to a red-shifted collective emission peak with accelerated dynamics. Here we report that similar spectroscopic features could appear as a result of the nanocrystal reactivity within the self-assembled superlattices. This is demonstrated by studying CsPbBr3 nanocrystal superlattices over time with room-temperature and cryogenic micro-photoluminescence spectroscopy, X-ray diffraction, and electron microscopy. It is shown that a gradual contraction of the superlattices and subsequent coalescence of the nanocrystals occurs over several days of keeping such structures under vacuum. As a result, a narrow, low-energy emission peak is observed at 4 K with a concomitant shortening of the photoluminescence lifetime due to the energy transfer between nanocrystals. When exposed to air, self-assembled CsPbBr3 nanocrystals develop bulk-like CsPbBr3 particles on top of the superlattices. At 4 K, these particles produce a distribution of narrow, low-energy emission peaks with short lifetimes and excitation fluence-dependent, oscillatory decays. Overall, the aging of CsPbBr3 nanocrystal assemblies dramatically alters their emission properties and that should not be overlooked when studying collective optoelectronic phenomena nor confused with superfluorescence effects.

8.
Acc Chem Res ; 53(8): 1458-1467, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32692152

RESUMEN

Surfaces-and interfaces-are ubiquitous at the nanoscale. Their relevance to nanoscience and nanotechnology is therefore inherent. Colloidal inorganic nanocrystals (NCs), which can show more than a half of their atoms at the surface, are paradigmatic of the role of surfaces in determining materials' form and functions. Therefore, colloidal NCs may be regarded as soluble surfaces, allowing convenient study of ensemble structure and properties in the solution phase.Colloidal NCs commonly bear chemical species at their surface. Such species (generally referred to as ligands) are introduced already in the synthetic procedures and are added postsynthesis in surface chemistry modification (ligand exchange) reactions. Ligands (i) affect the reactivity and diffusion of the synthetic precursors, (ii) mediate NC interactions with the surroundings, and (iii) contribute to the overall electronic structure. In principle, a vast amount of ligands, as large as our imagination, could be used to coordinate the surface of colloidal NCs. In practice and despite the plethora of studies on NC surface chemistry, a relatively limited number of ligands have been explored. In addition, the importance of designing a set of ligands with tailored features (a ligand library), which may permit comprehensive discussion and explanation of the role of surfaces in the NC structure and properties, is often overlooked. Ligand libraries may also foster heuristic access to novel, unexpected observations.Here, the rational design of ligand libraries is discussed, suggesting that it may be a general method to advance knowledge on colloidal NCs and nanomaterials at large.First, a general ligand framework is introduced. The main subunits are identified: ligands are constituted by a binding group and a pendant moiety, bearing functional substituent groups. On this basis, ligand binding at the NC surface is discussed borrowing concepts from coordination chemistry. Dynamic equilibria at the NC surface are highlighted, revealing the compromise between forming and breaking bonds at interfaces and its intricate interplay with the surroundings. Tailoring of the ligand subunits may impart functions to the whole ligand, eventually transposable to the ligated NC.On these bases, it is shown how ligand design may be exploited to (i) exert control on the size and shape of the NCs, (ii) determine NCs' dispersibility in a solvent and affect their self-assembly, and (iii) tune the NCs' optical and electronic properties. These observations point to a description of colloidal NCs as un-decomposable species: ligands may be conceived as an integral part of the overall chemical and electronic structure of the colloidal NC and should not be considered as mere appendages that weakly perturb the inorganic core features.Finally, a perspective on the ligand library design is given. Function-oriented design of the ligand subunits is foreseen as an effective strategy to explore the chemical diversity space. High-throughput screening processes by using computation may represent a valuable tool for such an exploration. The whole ligand features, which depend on the subunits, can be implemented in the final NCs, providing feedback for refined design, toward a priori materials design. Ligand libraries can be fundamental to enabling colloidal NCs as reliable luminophores and (photo)catalysts.

9.
J Clin Med ; 9(4)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331426

RESUMEN

BACKGROUND: The prognostic value of quick sepsis-related organ failure assessment (qSOFA) outside intensive care units has been criticized. Therefore, we aimed to improve its ability in predicting 30-day all-cause mortality, and in ruling out the cases at high risk of death among patients with suspected or confirmed sepsis at emergency department (ED) admission. METHODS: This study is a secondary analysis of a prospective multicenter study. We built three predictive models combining qSOFA with the clinical variables and serum biomarkers that resulted in an independent association with 30-day mortality, in both 848 undifferentiated patients (Group 1) and in 545 patients definitively diagnosed with sepsis (Group 2). The models reaching the highest negative predictive value (NPV) with the minimum expenditure of biomarkers in Group 1 and in Group 2 were validated in two cohorts of patients initially held out due to missing data. RESULTS: In terms of the area under the receiver-operating characteristic curve, all six models significantly exceeded qSOFA in predicting prognosis. An "extended" qSOFA (eqSOFA1) in Group 1 and an eqSOFA2 integrated with C-reactive protein and mid-regional proadrenomedullin (eqSOFA2+CRP+MR-proADM) in Group 2 reached the best NPV (0.94 and 0.93, respectively) and ease of use. eqSOFA1 and eqSOFA2+CRP+MR-proADM performed equally well in both the inception and validation cohorts. CONCLUSIONS: We have derived and validated two prognostic models that outweigh qSOFA in predicting mortality and in identifying the low risk of death among patients with suspected or confirmed sepsis at ED admission.

10.
Nanoscale ; 12(18): 10044-10050, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32342966

RESUMEN

High performance photodetectors based on colloidal quantum dots have been demonstrated in a wide spectral range spanning from the visible to the mid infrared. Quantum dot photodetectors typically show a low-pass type spectral response with a tunable cutoff wavelength. In this paper, we propose a method for the realization of narrowband photodetectors based on the combination of photoconductors and optical filters, both realized with colloidal PbS quantum dots. We demonstrate that an array of such narrowband photodetectors can be effectively employed for the realization of a compact wavemeter operating in the visible and near-infrared spectral range.

11.
J Phys Chem Lett ; 10(13): 3715-3726, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31244273

RESUMEN

Ruling over the surface chemistry of metal halide perovskite nanocrystals (NCs) is crucial to access reliable luminophores. Here, we provide an atomic-level description of the surface of colloidal CsPbBr3 NCs, achieving an effective passivation strategy that leads to near-unity photoluminescence quantum yield. To this end, we used two different types of CsPbBr3 NCs, which had been synthesized with an outer shell of either oleylammonium bromide ion pairs or Cs-oleate complexes. We perturbed the dynamic equilibria at the NCs' surface with ligands from a comprehensive library, including amines (and their conjugated acids) with different basicities, chain lengths, and steric encumbrances. We demonstrate that control of both ligand binding affinity and ligand-to-NC molar ratio is essential to attain thermodynamically stable coordination of the NC surface. We thus present a reliable protocol for managing the surface chemistry of colloidal CsPbBr3 NCs and for selectively addressing their ligand-induced morphological (and structural) transformations.

12.
Nanoscale ; 11(19): 9478-9487, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31045198

RESUMEN

Chemical species at the surface (ligands) of colloidal inorganic semiconductor nanocrystals (QDs) markedly impact the optoelectronic properties of the resulting systems. Here, post-synthesis surface chemistry modification of colloidal metal chalcogenide QDs is demonstrated to induce both broadband absorption enhancement and band gap reduction. A comprehensive library of chalcogenol(ate) ligands is exploited to infer the role of surface chemistry on the QD optical absorption: the ligand chalcogenol(ate) binding group mainly determines the narrowing of the optical band gap, which is attributed to the np occupied orbital contribution to the valence band edge, and mediates the absorption enhancement, which is related to the π-conjugation of the ligand pendant moiety, with further contribution from electron donor substituents. These findings point to a description of colloidal QDs that may conceive ligands as part of the overall QD electronic structure, beyond models derived from analogies with core/shell heterostructures, which consider ligands as mere perturbation to the core properties. The enhanced light absorption achieved via surface chemistry modification may be exploited for QD-based applications in which an efficient light-harvesting initiates charge carrier separation or redox processes.

13.
Nanoscale Adv ; 1(9): 3639-3646, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36133571

RESUMEN

The chemical species (ligands) at the surface of colloidal inorganic semiconductor nanocrystals (QDs) mediate their interactions with the surroundings. The solvation of the QDs reflects a subtle interplay between ligand-solvent and ligand-ligand interactions, which eventually compete with the coordination of the ligands at the QD surface. The QD surface coordination and solvation are indeed fundamental to preserve their optoelectronic properties and to foster the effective application of QD-based inks and nanocomposites. Here we investigate such ligand interactions by exploiting diffusion ordered NMR spectroscopy (DOSY), which is suggested as an essential complement to spectral line width analysis. To this end, we use colloidal metal chalcogenide (CdS, CdSe, and PbS) QDs with (metal-)oleate ligands at their surface in several solvents exhibiting different viscosities and polarities. We demonstrate that the ligand shell is dynamically bound to the metal chalcogenide QDs, and is thus in equilibrium between the QD surface and the surrounding solvent. Such dynamic equilibria depend on ligand-solvent interactions, which are more prominent in aliphatic, rather polar solvents that favor the solvation of the ligands and, as a consequence, their displacement from the QD surface. In addition, the ligand-ligand interactions, which are more relevant for larger QDs, contribute to the stabilization of the ligand bonding at the QD surface.

14.
Crit Care Med ; 46(9): 1421-1429, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29742588

RESUMEN

OBJECTIVES: To derive and validate a predictive algorithm integrating a nomogram-based prediction of the pretest probability of infection with a panel of serum biomarkers, which could robustly differentiate sepsis/septic shock from noninfectious systemic inflammatory response syndrome. DESIGN: Multicenter prospective study. SETTING: At emergency department admission in five University hospitals. PATIENTS: Nine-hundred forty-seven adults in inception cohort and 185 adults in validation cohort. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A nomogram, including age, Sequential Organ Failure Assessment score, recent antimicrobial therapy, hyperthermia, leukocytosis, and high C-reactive protein values, was built in order to take data from 716 infected patients and 120 patients with noninfectious systemic inflammatory response syndrome to predict pretest probability of infection. Then, the best combination of procalcitonin, soluble phospholipase A2 group IIA, presepsin, soluble interleukin-2 receptor α, and soluble triggering receptor expressed on myeloid cell-1 was applied in order to categorize patients as "likely" or "unlikely" to be infected. The predictive algorithm required only procalcitonin backed up with soluble phospholipase A2 group IIA determined in 29% of the patients to rule out sepsis/septic shock with a negative predictive value of 93%. In a validation cohort of 158 patients, predictive algorithm reached 100% of negative predictive value requiring biomarker measurements in 18% of the population. CONCLUSIONS: We have developed and validated a high-performing, reproducible, and parsimonious algorithm to assist emergency department physicians in distinguishing sepsis/septic shock from noninfectious systemic inflammatory response syndrome.


Asunto(s)
Algoritmos , Sepsis/sangre , Sepsis/diagnóstico , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Diagnóstico Diferencial , Servicio de Urgencia en Hospital , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nomogramas , Admisión del Paciente , Estudios Prospectivos
15.
J Phys Chem Lett ; 8(20): 5209-5215, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28972763

RESUMEN

Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI3 as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition.

16.
Nano Lett ; 17(2): 1248-1254, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28055216

RESUMEN

Nowadays it is well-accepted to attribute bulk-like optical absorption properties to colloidal PbS quantum dots (QDs) at wavelengths above 400 nm. This assumption permits to describe PbS QD light absorption by using bulk optical constants and to determine QD concentration in colloidal solutions from simple spectrophotometric measurements. Here we demonstrate that PbS QDs experience the quantum confinement regime across the entire near UV-vis-NIR spectral range, therefore also between 350 and 400 nm already proposed to be sufficiently far above the band gap to suppress quantum confinement. This effect is particularly relevant for small PbS QDs (with diameter of ≤4 nm) leading to absorption coefficients that largely differ from bulk values (up to ∼40% less). As a result of the broadband quantum confinement and of the high surface-to-volume ratio peculiar of nanocrystals, suitable surface chemical modification of PbS QDs is exploited to achieve a marked, size-dependent enhancement of the absorption coefficients compared to bulk values (up to ∼250%). We provide empirical relations to determine the absorption coefficients at 400 nm of as-synthesized and ligand-exchanged PbS QDs, accounting for the broadband quantum confinement and suggesting a heuristic approach to qualitatively predict the ligand effects on the optical absorption properties of PbS QDs. Our findings go beyond formalisms derived from Maxwell Garnett effective medium theory to describe QD optical properties and permit to spectrophotometrically calculate the concentration of PbS QD solutions avoiding underestimation due to deviations from the bulk. In perspective, we envisage the use of extended π-conjugated ligands bearing electronically active substituents to enhance light-harvesting in QD solids and suggest the inadequacy of the representation of ligands at the QD surface as mere electric dipoles.


Asunto(s)
Plomo/química , Puntos Cuánticos/química , Sulfuros/química , Luminiscencia , Modelos Químicos , Nanotecnología , Tamaño de la Partícula , Propiedades de Superficie
17.
Angew Chem Int Ed Engl ; 55(23): 6628-33, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27038221

RESUMEN

Colloidal quantum dots are composed of nanometer-sized crystallites of inorganic semiconductor materials bearing organic molecules at their surface. The organic/inorganic interface markedly affects forms and functions of the quantum dots, therefore its description and control are important for effective application. Herein we demonstrate that archetypal colloidal PbS quantum dots adapt their interface to the surroundings, thus existing in solution phase as equilibrium mixtures with their (metal-)organic ligand and inorganic core components. The interfacial equilibria are dictated by solvent polarity and concentration, show striking size dependence (leading to more stable ligand/core adducts for larger quantum dots), and selectively involve nanocrystal facets. This notion of ligand/core dynamic equilibrium may open novel synthetic paths and refined nanocrystal surface-chemistry strategies.

18.
J Am Chem Soc ; 137(5): 1875-86, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25574692

RESUMEN

Colloidal quantum dots (QDs) stand among the most attractive light-harvesting materials to be exploited for solution-processed optoelectronic applications. To this aim, quantitative replacement of the bulky electrically insulating ligands at the QD surface coming from the synthetic procedure is mandatory. Here we present a conceptually novel approach to design light-harvesting nanomaterials demonstrating that QD surface modification with suitable short conjugated organic molecules permits us to drastically enhance light absorption of QDs, while preserving good long-term colloidal stability. Indeed, rational design of the pendant and anchoring moieties, which constitute the replacing ligand framework leads to a broadband increase of the optical absorbance larger than 300% for colloidal PbS QDs also at high energies (>3.1 eV), which could not be predicted by using formalisms derived from effective medium theory. We attribute such a drastic absorbance increase to ground-state ligand/QD orbital mixing, as inferred by density functional theory calculations; in addition, our findings suggest that the optical band gap reduction commonly observed for PbS QD solids treated with thiol-terminating ligands can be prevalently ascribed to 3p orbitals localized on anchoring sulfur atoms, which mix with the highest occupied states of the QDs. More broadly, we provide evidence that organic ligands and inorganic cores are inherently electronically coupled materials thus yielding peculiar chemical species (the colloidal QDs themselves), which display arising (opto)electronic properties that cannot be merely described as the sum of those of the ligand and core components.


Asunto(s)
Absorción de Radiación , Plomo/química , Fenómenos Ópticos , Puntos Cuánticos/química , Sulfuros/química , Coloides , Ligandos , Luz , Modelos Moleculares , Conformación Molecular , Termodinámica
19.
Intern Emerg Med ; 9(7): 749-57, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24362623

RESUMEN

The objective of the study was to determine the accuracy of phospholipase A2 group II (PLA2-II), interferon-gamma-inducible protein 10 (IP-10), angiopoietin-2 (Ang-2), and procalcitonin (PCT) plasma levels in early ruling in/out of sepsis among systemic inflammatory response syndrome (SIRS) patients. Biomarker levels were determined in 80 SIRS patients during the first 4 h of admission to the medical ward. The final diagnosis of sepsis or non-infective SIRS was issued according to good clinical practice. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for sepsis diagnosis were assessed. The optimal biomarker combinations with clinical variables were investigated by logistic regression and decision tree (CART). PLA2-II, IP-10 and PCT, but not Ang-2, were significantly higher in septic (n = 60) than in non-infective SIRS (n = 20) patients (P ≤ 0.001, 0.027, and 0.002, respectively). PLA2-II PPV and NPV were 88 and 86%, respectively. The corresponding figures were 100 and 31% for IP-10, and 93 and 35% for PCT. Binary logistic regression model had 100% PPV and NPV, while manual and software-generated CART reached an overall accuracy of 95 and 98%, respectively, both with 100% NPV. PLA2-II and IP-10 associated with clinical variables in regression or decision tree heterogeneous models may be valuable biomarkers for sepsis diagnosis in SIRS patients admitted to medical ward (MW). Further studies are needed to introduce them into clinical practice.


Asunto(s)
Sepsis/sangre , Sepsis/diagnóstico , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Árboles de Decisión , Diagnóstico Diferencial , Diagnóstico Precoz , Femenino , Humanos , Modelos Logísticos , Masculino , Proyectos Piloto
20.
Curr Drug Metab ; 14(5): 565-82, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23687927

RESUMEN

Aptamer researches applied to the treatment of human cancers have increased since their discovery in 1990. This is due to different factors including: 1) the technical possibility to select, by SELEX-based procedures, specific aptamers targeting virtually any given molecule, 2) the aptamer favorable bio-activity in vivo, 3) the low production costs and 4) the ease synthesis and storage for the marketing. In the field of cancer treatments, aptamers have been studied as tumor-specific agents driving drugs into cancer cells; additionally they have been used as anti-neoplastic agents, able to inhibit tumor cell growth and dissemination when administered alone or in combination with conventional anti-neoplastic drugs. Aptamers are gaining an increased interest for pharmaceutical companies and some of them are under clinical evaluation trials. In this review we update the findings about the use of aptamers as "escort" molecules able to drive drugs into the cells and as antineoplastic drugs. Current anti-neoplastic treatments suffer from the intrinsic toxicity related to the un-specific targeting of both normal and tumorigenic proliferating cells. The aptamers could be useful to improve: 1) the selective targeting of molecules essential for the viability and expansion of tumor cells and/or the selective driving of chemotherapies into tumor cells, thus resulting in higher effectiveness and lower systemic side-effects compared to conventional anti-neoplastic drugs alone and 2) to improve the therapeutic index of currently used chemotherapies. Even if some problems related to the in vivo stability and pharmacokinetic/dynamics of aptamers remain to be improved, their potential use in the treatment of different human cancers is getting closer and closer to a practical therapeutic use.


Asunto(s)
Antineoplásicos/administración & dosificación , Aptámeros de Nucleótidos/química , Sistemas de Liberación de Medicamentos , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Ensayos Clínicos como Asunto , Diseño de Fármacos , Industria Farmacéutica , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...