Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Res ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951027

RESUMEN

Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state Regulatory Potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbored distinctive transcription factor binding motifs that were similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we showed that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.

2.
Nat Genet ; 56(6): 1213-1224, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38802567

RESUMEN

During mitosis, condensin activity is thought to interfere with interphase chromatin structures. To investigate genome folding principles in the absence of chromatin loop extrusion, we codepleted condensin I and condensin II, which triggered mitotic chromosome compartmentalization in ways similar to that in interphase. However, two distinct euchromatic compartments, indistinguishable in interphase, emerged upon condensin loss with different interaction preferences and dependencies on H3K27ac. Constitutive heterochromatin gradually self-aggregated and cocompartmentalized with facultative heterochromatin, contrasting with their separation during interphase. Notably, some cis-regulatory element contacts became apparent even in the absence of CTCF/cohesin-mediated structures. Heterochromatin protein 1 (HP1) proteins, which are thought to partition constitutive heterochromatin, were absent from mitotic chromosomes, suggesting, surprisingly, that constitutive heterochromatin can self-aggregate without HP1. Indeed, in cells traversing from M to G1 phase in the combined absence of HP1α, HP1ß and HP1γ, constitutive heterochromatin compartments are normally re-established. In sum, condensin-deficient mitotic chromosomes illuminate forces of genome compartmentalization not identified in interphase cells.


Asunto(s)
Adenosina Trifosfatasas , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN , Heterocromatina , Mitosis , Complejos Multiproteicos , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Mitosis/genética , Humanos , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Interfase/genética , Cromosomas/genética , Homólogo de la Proteína Chromobox 5 , Cromatina/metabolismo , Cromatina/genética
3.
bioRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37066352

RESUMEN

Knowledge of locations and activities of cis -regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our V al i dated S ystematic I ntegrati on (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state Regulatory Potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbored distinctive transcription factor binding motifs that were similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we showed that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.

4.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014261

RESUMEN

During mitosis, condensin activity interferes with interphase chromatin structures. Here, we generated condensin-free mitotic chromosomes to investigate genome folding principles. Co-depletion of condensin I and II, but neither alone, triggered mitotic chromosome compartmentalization in ways that differ from interphase. Two distinct euchromatic compartments, indistinguishable in interphase, rapidly emerged upon condensin loss with different interaction preferences and dependence on H3K27ac. Constitutive heterochromatin gradually self-aggregated and co-compartmentalized with the facultative heterochromatin, contrasting with their separation during interphase. While topologically associating domains (TADs) and CTCF/cohesin mediated structural loops remained undetectable, cis-regulatory element contacts became apparent, providing an explanation for their quick re-establishment during mitotic exit. HP1 proteins, which are thought to partition constitutive heterochromatin, were absent from mitotic chromosomes, suggesting, surprisingly, that constitutive heterochromatin can self-aggregate without HP1. Indeed, in cells traversing from M- to G1-phase in the combined absence of HP1α, HP1ß and HP1γ, re-established constitutive heterochromatin compartments normally. In sum, "clean-slate" condensing-deficient mitotic chromosomes illuminate mechanisms of genome compartmentalization not revealed in interphase cells.

5.
Mol Cell ; 83(5): 715-730.e6, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36868189

RESUMEN

Transcriptional enhancers have been extensively characterized, but cis-regulatory elements involved in acute gene repression have received less attention. Transcription factor GATA1 promotes erythroid differentiation by activating and repressing distinct gene sets. Here, we study the mechanism by which GATA1 silences the proliferative gene Kit during murine erythroid cell maturation and define stages from initial loss of activation to heterochromatinization. We find that GATA1 inactivates a potent upstream enhancer but concomitantly creates a discrete intronic regulatory region marked by H3K27ac, short noncoding RNAs, and de novo chromatin looping. This enhancer-like element forms transiently and serves to delay Kit silencing. The element is ultimately erased via the FOG1/NuRD deacetylase complex, as revealed by the study of a disease-associated GATA1 variant. Hence, regulatory sites can be self-limiting by dynamic co-factor usage. Genome-wide analyses across cell types and species uncover transiently active elements at numerous genes during repression, suggesting that modulation of silencing kinetics is widespread.


Asunto(s)
Estudio de Asociación del Genoma Completo , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Ratones , Intrones , Diferenciación Celular , Silenciador del Gen , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2
6.
Nat Struct Mol Biol ; 29(11): 1136-1144, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369346

RESUMEN

Transcription at most promoters is divergent, initiating at closely spaced oppositely oriented core promoters to produce sense transcripts along with often unstable upstream antisense transcripts (uasTrx). How antisense transcription is regulated and to what extent it is coordinated with sense transcription is not well understood. Here, by combining acute degradation of the multi-functional transcription factor CTCF and nascent transcription measurements, we find that CTCF specifically suppresses antisense but not sense transcription at hundreds of divergent promoters. Primary transcript RNA-FISH shows that CTCF lowers burst fraction but not burst intensity of uasTrx and that co-bursting of sense and antisense transcripts is disfavored. Genome editing, chromatin conformation studies and high-resolution transcript mapping revealed that precisely positioned CTCF directly suppresses the initiation of uasTrx, in a manner independent of its architectural function. In sum, CTCF shapes the transcriptional landscape in part by suppressing upstream antisense transcription.


Asunto(s)
Cromatina , Transcripción Genética , Regiones Promotoras Genéticas , Cromatina/genética , ARN sin Sentido/genética , Regulación de la Expresión Génica
7.
Blood Adv ; 6(23): 5956-5968, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-35622975

RESUMEN

The fetal-to-adult hemoglobin transition is clinically relevant because reactivation of fetal hemoglobin (HbF) significantly reduces morbidity and mortality associated with sickle cell disease (SCD) and ß-thalassemia. Most studies on the developmental regulation of the globin genes, including genome-wide genetics screens, have focused on DNA binding proteins, including BCL11A and ZBTB7A/LRF and their cofactors. Our understanding of RNA binding proteins (RBPs) in this process is much more limited. Two RBPs, LIN28B and IGF2BP1, are known posttranscriptional regulators of HbF production, but a global view of RBPs is still lacking. Here, we carried out a CRISPR/Cas9-based screen targeting RBPs harboring RNA methyltransferase and/or RNA recognition motif (RRM) domains and identified RNA binding motif 12 (RBM12) as a novel HbF suppressor. Depletion of RBM12 induced HbF expression and attenuated cell sickling in erythroid cells derived from patients with SCD with minimal detrimental effects on cell maturation. Transcriptome and proteome profiling revealed that RBM12 functions independently of major known HbF regulators. Enhanced cross-linking and immunoprecipitation followed by high-throughput sequencing revealed strong preferential binding of RBM12 to 5' untranslated regions of transcripts, narrowing down the mechanism of RBM12 action. Notably, we pinpointed the first of 5 RRM domains as essential, and, in conjunction with a linker domain, sufficient for RBM12-mediated HbF regulation. Our characterization of RBM12 as a negative regulator of HbF points to an additional regulatory layer of the fetal-to-adult hemoglobin switch and broadens the pool of potential therapeutic targets for SCD and ß-thalassemia.


Asunto(s)
Anemia de Células Falciformes , Talasemia beta , Adulto , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Talasemia beta/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Proteínas de Unión al ARN/genética
8.
Bioinformatics ; 37(18): 3011-3013, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-33681991

RESUMEN

SUMMARY: Epigenetic modifications reflect key aspects of transcriptional regulation, and many epigenomic datasets have been generated under different biological contexts to provide insights into regulatory processes. However, the technical noise in epigenomic datasets and the many dimensions (features) examined make it challenging to effectively extract biologically meaningful inferences from these datasets. We developed a package that reduces noise while normalizing the epigenomic data by a novel normalization method, followed by integrative dimensional reduction by learning and assigning epigenetic states. This package, called S3V2-IDEAS, can be used to identify epigenetic states for multiple features, or identify discretized signal intensity levels and a master peak list across different cell types for a single feature. We illustrate the outputs and performance of S3V2-IDEAS using 137 epigenomics datasets from the VISION project that provides ValIdated Systematic IntegratiON of epigenomic data in hematopoiesis. AVAILABILITY AND IMPLEMENTATION: S3V2-IDEAS pipeline is freely available as open source software released under an MIT license at: https://github.com/guanjue/S3V2_IDEAS_ESMP. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Epigenómica , Programas Informáticos , Epigenómica/métodos , Epigénesis Genética , Regulación de la Expresión Génica , Hematopoyesis
9.
Cell Rep ; 34(8): 108783, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33626344

RESUMEN

CCCTC-binding factor (CTCF) is a conserved zinc finger transcription factor implicated in a wide range of functions, including genome organization, transcription activation, and elongation. To explore the basis for CTCF functional diversity, we coupled an auxin-induced degron system with precision nuclear run-on. Unexpectedly, oriented CTCF motifs in gene bodies are associated with transcriptional stalling in a manner independent of bound CTCF. Moreover, CTCF at different binding sites (CBSs) displays highly variable resistance to degradation. Motif sequence does not significantly predict degradation behavior, but location at chromatin boundaries and chromatin loop anchors, as well as co-occupancy with cohesin, are associated with delayed degradation. Single-molecule tracking experiments link chromatin residence time to CTCF degradation kinetics, which has ramifications regarding architectural CTCF functions. Our study highlights the heterogeneity of CBSs, uncovers properties specific to architecturally important CBSs, and provides insights into the basic processes of genome organization and transcription regulation.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , Cromatina/metabolismo , Eritroblastos/metabolismo , Imagen Individual de Molécula , Animales , Sitios de Unión , Factor de Unión a CCCTC/genética , Sistemas CRISPR-Cas , Línea Celular , Cromatina/genética , Ensamble y Desensamble de Cromatina , Edición Génica , Cinética , Ratones , Simulación de Dinámica Molecular , Unión Proteica , Proteolisis , ARN Polimerasa II/metabolismo , Transcripción Genética
10.
Nucleic Acids Res ; 49(D1): D1192-D1196, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33125055

RESUMEN

HbVar (http://globin.bx.psu.edu/hbvar) is a widely-used locus-specific database (LSDB) launched 20 years ago by a multi-center academic effort to provide timely information on the numerous genomic variants leading to hemoglobin variants and all types of thalassemia and hemoglobinopathies. Here, we report several advances for the database. We made clinically relevant updates of HbVar, implemented as additional querying options in the HbVar query page, allowing the user to explore the clinical phenotype of compound heterozygous patients. We also made significant improvements to the HbVar front page, making comparative data querying, analysis and output more user-friendly. We continued to expand and enrich the regular data content, involving 1820 variants, 230 of which are new entries. We also increased the querying potential and expanded the usefulness of HbVar database in the clinical setting. These several additions, expansions and updates should improve the utility of HbVar both for the globin research community and in a clinical setting.


Asunto(s)
Bases de Datos Genéticas , Hemoglobinas/genética , Mutación , Programas Informáticos , Talasemia/genética , Expresión Génica , Sitios Genéticos , Genoma Humano , Genómica/métodos , Genotipo , Hemoglobinas/química , Hemoglobinas/metabolismo , Heterocigoto , Humanos , Internet , Fenotipo , Talasemia/clasificación , Talasemia/patología
11.
Blood Adv ; 4(18): 4560-4572, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32956454

RESUMEN

Increasing fetal hemoglobin (HbF) provides clinical benefit in patients with sickle cell disease (SCD). We recently identified heme-regulated inhibitor (HRI, EIF2AK1), as a novel HbF regulator. Because HRI is an erythroid-specific protein kinase, it presents a potential target for pharmacologic intervention. We found that maximal HbF induction required >80% to 85% HRI depletion. Because it remains unclear whether this degree of HRI inhibition can be achieved pharmacologically, we explored whether HRI knockdown can be combined with pharmacologic HbF inducers to achieve greater HbF production and minimize potential adverse effects associated with treatments. Strongly cooperative HbF induction was observed when HRI depletion was combined with exposure to pomalidomide or the EHMT1/2 inhibitor UNC0638, but not to hydroxyurea. Mechanistically, reduction in the levels of the HbF repressor BCL11A reflected the cooperativity of HRI loss and pomalidomide treatment, whereas UNC0638 did not modulate BCL11A levels. In conjunction with HRI loss, pomalidomide maintained its HbF-inducing activity at 10-fold lower concentrations, in which condition there were minimal observed detrimental effects on erythroid cell maturation and viability, as well as fewer alterations in the erythroid transcriptome. When tested in cells from patients with SCD, combining HRI depletion with pomalidomide or UNC0638 achieved up to 50% to 60% HbF and 45% to 50% HbF, respectively, as measured by high-performance liquid chromatography, and markedly counteracted cell sickling. In summary, this study provides a foundation for the exploration of combining future small-molecule HRI inhibitors with additional pharmacologic HbF inducers to maximize HbF production and preserve erythroid cell functionality for the treatment of SCD and other hemoglobinopathies.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Fetal , Anemia de Células Falciformes/tratamiento farmacológico , Eritrocitos Anormales , Células Eritroides , Hemoglobina Fetal/genética , Humanos , Hidroxiurea/farmacología
12.
Blood ; 135(22): 1957-1968, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32268371

RESUMEN

Reversing the developmental switch from fetal hemoglobin (HbF, α2γ2) to adult hemoglobin (HbA, α2ß2) is an important therapeutic approach in sickle cell disease (SCD) and ß-thalassemia. In healthy individuals, SCD patients, and patients treated with pharmacologic HbF inducers, HbF is present only in a subset of red blood cells known as F cells. Despite more than 50 years of observations, the cause for this heterocellular HbF expression pattern, even among genetically identical cells, remains unknown. Adult F cells might represent a reversion of a given cell to a fetal-like epigenetic and transcriptional state. Alternatively, isolated transcriptional or posttranscriptional events at the γ-globin genes might underlie heterocellularity. Here, we set out to understand the heterogeneity of HbF activation by developing techniques to purify and profile differentiation stage-matched late erythroblast F cells and non-F cells (A cells) from the human HUDEP2 erythroid cell line and primary human erythroid cultures. Transcriptional and proteomic profiling of these cells demonstrated very few differences between F and A cells at the RNA level either under baseline conditions or after treatment with HbF inducers hydroxyurea or pomalidomide. Surprisingly, we did not find differences in expression of any known HbF regulators, including BCL11A or LRF, that would account for HbF activation. Our analysis shows that F erythroblasts are not significantly different from non-HbF-expressing cells and that the primary differences likely occur at the transcriptional level at the ß-globin locus.


Asunto(s)
Eritroblastos/metabolismo , Hemoglobina Fetal/biosíntesis , Hemoglobina A/metabolismo , Adulto , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/genética , Línea Celular , Separación Celular/métodos , Células Cultivadas , Eritroblastos/clasificación , Eritroblastos/efectos de los fármacos , Células Eritroides/clasificación , Células Eritroides/metabolismo , Hemoglobina Fetal/genética , Perfilación de la Expresión Génica , Hemoglobina A/genética , Humanos , Hidroxiurea/farmacología , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Talidomida/análogos & derivados , Talidomida/farmacología
13.
Genome Res ; 30(3): 472-484, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32132109

RESUMEN

Thousands of epigenomic data sets have been generated in the past decade, but it is difficult for researchers to effectively use all the data relevant to their projects. Systematic integrative analysis can help meet this need, and the VISION project was established for validated systematic integration of epigenomic data in hematopoiesis. Here, we systematically integrated extensive data recording epigenetic features and transcriptomes from many sources, including individual laboratories and consortia, to produce a comprehensive view of the regulatory landscape of differentiating hematopoietic cell types in mouse. By using IDEAS as our integrative and discriminative epigenome annotation system, we identified and assigned epigenetic states simultaneously along chromosomes and across cell types, precisely and comprehensively. Combining nuclease accessibility and epigenetic states produced a set of more than 200,000 candidate cis-regulatory elements (cCREs) that efficiently capture enhancers and promoters. The transitions in epigenetic states of these cCREs across cell types provided insights into mechanisms of regulation, including decreases in numbers of active cCREs during differentiation of most lineages, transitions from poised to active or inactive states, and shifts in nuclease accessibility of CTCF-bound elements. Regression modeling of epigenetic states at cCREs and gene expression produced a versatile resource to improve selection of cCREs potentially regulating target genes. These resources are available from our VISION website to aid research in genomics and hematopoiesis.


Asunto(s)
Epigénesis Genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Animales , Ratones , Elementos Reguladores de la Transcripción , Transcriptoma
14.
IUBMB Life ; 72(1): 27-38, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31769130

RESUMEN

Members of the GATA family of transcription factors play key roles in the differentiation of specific cell lineages by regulating the expression of target genes. Three GATA factors play distinct roles in hematopoietic differentiation. In order to better understand how these GATA factors function to regulate genes throughout the genome, we are studying the epigenomic and transcriptional landscapes of hematopoietic cells in a model-driven, integrative fashion. We have formed the collaborative multi-lab VISION project to conduct ValIdated Systematic IntegratiON of epigenomic data in mouse and human hematopoiesis. The epigenomic data included nuclease accessibility in chromatin, CTCF occupancy, and histone H3 modifications for 20 cell types covering hematopoietic stem cells, multilineage progenitor cells, and mature cells across the blood cell lineages of mouse. The analysis used the Integrative and Discriminative Epigenome Annotation System (IDEAS), which learns all common combinations of features (epigenetic states) simultaneously in two dimensions-along chromosomes and across cell types. The result is a segmentation that effectively paints the regulatory landscape in readily interpretable views, revealing constitutively active or silent loci as well as the loci specifically induced or repressed in each stage and lineage. Nuclease accessible DNA segments in active chromatin states were designated candidate cis-regulatory elements in each cell type, providing one of the most comprehensive registries of candidate hematopoietic regulatory elements to date. Applications of VISION resources are illustrated for the regulation of genes encoding GATA1, GATA2, GATA3, and Ikaros. VISION resources are freely available from our website http://usevision.org.


Asunto(s)
Cromatina/metabolismo , Epigenoma , Factores de Transcripción GATA/metabolismo , Regulación de la Expresión Génica , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Animales , Diferenciación Celular , Cromatina/genética , Factores de Transcripción GATA/genética , Humanos
15.
Genom Data ; 4: 1-7, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25729644

RESUMEN

During the maturation phase of mammalian erythroid differentiation, highly proliferative cells committed to the erythroid lineage undergo dramatic changes in morphology and function to produce circulating, enucleated erythrocytes. These changes are caused by equally dramatic alterations in gene expression, which in turn are driven by changes in the abundance and binding patterns of transcription factors such as GATA1. We have studied the dynamics of GATA1 binding by ChIP-seq and the global expression responses by RNA-seq in a GATA1-dependent mouse cell line model for erythroid maturation, in both cases examining seven progressive stages during differentiation. Analyses of these data should provide insights both into mechanisms of regulation (early versus late targets) and the consequences in cell physiology (e.g. distinctive categories of genes regulated at progressive stages of differentiation). The data are deposited in the Gene Expression Omnibus, series GSE36029, GSE40522, GSE49847, and GSE51338.

16.
Blood ; 125(18): 2825-34, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25696920

RESUMEN

Inhibitors of bromodomain and extraterminal motif proteins (BETs) are being evaluated for the treatment of cancer and other diseases, yet much remains to be learned about how BET proteins function during normal physiology. We used genomic and genetic approaches to examine BET function in a hematopoietic maturation system driven by GATA1, an acetylated transcription factor previously shown to interact with BETs. We found that BRD2, BRD3, and BRD4 were variably recruited to GATA1-regulated genes, with BRD3 binding the greatest number of GATA1-occupied sites. Pharmacologic BET inhibition impaired GATA1-mediated transcriptional activation, but not repression, genome-wide. Mechanistically, BETs promoted chromatin occupancy of GATA1 and subsequently supported transcriptional activation. Using a combination of CRISPR-Cas9-mediated genomic engineering and shRNA approaches, we observed that depletion of either BRD2 or BRD4 alone blunted erythroid gene activation. Surprisingly, depletion of BRD3 only affected erythroid transcription in the context of BRD2 deficiency. Consistent with functional overlap among BET proteins, forced BRD3 expression substantially rescued defects caused by BRD2 deficiency. These results suggest that pharmacologic BET inhibition should be interpreted in the context of distinct steps in transcriptional activation and overlapping functions among BET family members.


Asunto(s)
Células Eritroides/metabolismo , Regulación de la Expresión Génica , Hematopoyesis/genética , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Unión al ARN/fisiología , Animales , Células Cultivadas , Factor de Transcripción GATA1/genética , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/química , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/química
17.
Nucleic Acids Res ; 41(Database issue): D64-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23155063

RESUMEN

The University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a wide variety of organisms. The Browser is an integrated tool set for visualizing, comparing, analysing and sharing both publicly available and user-generated genomic datasets. As of September 2012, genomic sequence and a basic set of annotation 'tracks' are provided for 63 organisms, including 26 mammals, 13 non-mammal vertebrates, 3 invertebrate deuterostomes, 13 insects, 6 worms, yeast and sea hare. In the past year 19 new genome assemblies have been added, and we anticipate releasing another 28 in early 2013. Further, a large number of annotation tracks have been either added, updated by contributors or remapped to the latest human reference genome. Among these are an updated UCSC Genes track for human and mouse assemblies. We have also introduced several features to improve usability, including new navigation menus. This article provides an update to the UCSC Genome Browser database, which has been previously featured in the Database issue of this journal.


Asunto(s)
Bases de Datos Genéticas , Genómica , Animales , Genoma Humano , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Programas Informáticos
18.
Curr Protoc Bioinformatics ; Chapter 15: 15.2.1-15.2.27, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22948727

RESUMEN

This unit focuses on some of the tools available on the public Galaxy server that are useful for exploring possible associations between human genetic variants and phenotypes. We trace step-by-step through an example illustrating several methods for examining a single full-coverage genome to look for single-nucleotide polymorphisms (SNPs) that are either known to be associated with disease or suspected to have impact for other reasons. It makes use of public genomic data, tools designed specifically for working with variants, and also some general tools for text manipulation and operations on genomic coordinates.


Asunto(s)
Fenotipo , Polimorfismo de Nucleótido Simple , Programas Informáticos , Variación Genética , Genoma Humano , Humanos
19.
Nucleic Acids Res ; 40(Database issue): D918-23, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22086951

RESUMEN

The University of California Santa Cruz Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a wide variety of organisms. The Browser is an integrated tool set for visualizing, comparing, analyzing and sharing both publicly available and user-generated genomic data sets. In the past year, the local database has been updated with four new species assemblies, and we anticipate another four will be released by the end of 2011. Further, a large number of annotation tracks have been either added, updated by contributors, or remapped to the latest human reference genome. Among these are new phenotype and disease annotations, UCSC genes, and a major dbSNP update, which required new visualization methods. Growing beyond the local database, this year we have introduced 'track data hubs', which allow the Genome Browser to provide access to remotely located sets of annotations. This feature is designed to significantly extend the number and variety of annotation tracks that are publicly available for visualization and analysis from within our site. We have also introduced several usability features including track search and a context-sensitive menu of options available with a right-click anywhere on the Browser's image.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genoma , Animales , Enfermedad/genética , Genoma Humano , Genómica , Humanos , Internet , Anotación de Secuencia Molecular , Fenotipo
20.
Nucleic Acids Res ; 39(Database issue): D876-82, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20959295

RESUMEN

The University of California, Santa Cruz Genome Browser (http://genome.ucsc.edu) offers online access to a database of genomic sequence and annotation data for a wide variety of organisms. The Browser also has many tools for visualizing, comparing and analyzing both publicly available and user-generated genomic data sets, aligning sequences and uploading user data. Among the features released this year are a gene search tool and annotation track drag-reorder functionality as well as support for BAM and BigWig/BigBed file formats. New display enhancements include overlay of multiple wiggle tracks through use of transparent coloring, options for displaying transformed wiggle data, a 'mean+whiskers' windowing function for display of wiggle data at high zoom levels, and more color schemes for microarray data. New data highlights include seven new genome assemblies, a Neandertal genome data portal, phenotype and disease association data, a human RNA editing track, and a zebrafish Conservation track. We also describe updates to existing tracks.


Asunto(s)
Bases de Datos Genéticas , Genómica , Animales , Enfermedad/genética , Genes , Genoma Humano , Hominidae/genética , Humanos , Internet , Anotación de Secuencia Molecular , Fenotipo , Edición de ARN , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...