Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 33(3): e17230, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38078558

RESUMEN

Urbanization is a persistent and widespread driver of global environmental change, potentially shaping evolutionary processes due to genetic drift and reduced gene flow in cities induced by habitat fragmentation and small population sizes. We tested this prediction for the eastern grey squirrel (Sciurus carolinensis), a common and conspicuous forest-dwelling rodent, by obtaining 44K SNPs using reduced representation sequencing (ddRAD) for 403 individuals sampled across the species' native range in eastern North America. We observed moderate levels of genetic diversity, low levels of inbreeding, and only a modest signal of isolation-by-distance. Clustering and migration analyses show that estimated levels of migration and genetic connectivity were higher than expected across cities and forested areas, specifically within the eastern portion of the species' range dominated by urbanization, and genetic connectivity was less than expected within the western range where the landscape is fragmented by agriculture. Landscape genetic methods revealed greater gene flow among individual squirrels in forested regions, which likely provide abundant food and shelter for squirrels. Although gene flow appears to be higher in areas with more tree cover, only slight discontinuities in gene flow suggest eastern grey squirrels have maintained connected populations across urban areas in all but the most heavily fragmented agricultural landscapes. Our results suggest urbanization shapes biological evolution in wildlife species depending strongly on the composition and habitability of the landscape matrix surrounding urban areas.


Asunto(s)
Animales Salvajes , Metagenómica , Animales , Humanos , Población Urbana , Ecosistema , Sciuridae/genética
2.
Ecol Evol ; 13(10): e10544, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37829180

RESUMEN

Phenotypic differences between urban and rural populations are well-documented, but the evolutionary processes driving trait variation along urbanization gradients are often unclear. We combined spatial data on abundance, trait variation, and measurements of fitness to understand cline structure and test for natural selection on heritable coat color morphs (melanic, gray) of eastern gray squirrels (Sciurus carolinensis) along an urbanization gradient. Population surveys using remote cameras and visual counts at 76 sites along the urbanization gradient revealed a significant cline in melanism, decreasing from 48% in the city center to <5% in rural woodlands. Among 76 squirrels translocated to test for phenotypic selection, survival was lower for the melanic than gray morph in rural woodlands, whereas there was no difference in survival between color morphs in the city. These results suggest the urban-rural cline in melanism is explained by natural selection favoring the gray morph in rural woodlands combined with relaxed selection in the city. Our study illustrates how trait variation between urban and rural populations can emerge from selection primarily in rural populations rather than adaptation to novel features of the urban environment.

3.
PNAS Nexus ; 2(8): pgad241, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37614675

RESUMEN

Chelonians (turtles, tortoises, and sea turtles) grow scute keratin in sequential layers over time. Once formed, scute keratin acts as an inert reservoir of environmental information. For chelonians inhabiting areas with legacy or modern nuclear activities, their scute has the potential to act as a time-stamped record of radionuclide contamination in the environment. Here, we measure bulk (i.e. homogenized scute) and sequential samples of chelonian scute from the Republic of the Marshall Islands and throughout the United States of America, including at the Barry M. Goldwater Air Force Range, southwestern Utah, the Savannah River Site, and the Oak Ridge Reservation. We identify legacy uranium (235U and 236U) contamination in bulk and sequential chelonian scute that matches known nuclear histories at these locations during the 20th century. Our results confirm that chelonians bioaccumulate uranium radionuclides and do so sequentially over time. This technique provides both a time series approach for reconstructing nuclear histories from significant past and present contexts throughout the world and the ability to use chelonians for long-term environmental monitoring programs (e.g. sea turtles at Enewetok and Bikini Atolls in the Republic of the Marshall Islands and in Japan near the Fukushima Daiichi reactors).

4.
Sci Rep ; 12(1): 22187, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564467

RESUMEN

A consequence of over 400 years of human exploitation of Galápagos tortoises (Chelonoidis niger ssp.) is the extinction of several subspecies and the decimation of others. As humans captured, killed, and/or removed tortoises for food, oil, museums, and zoos, they also colonized the archipelago resulting in the introduction of invasive plants, animals, and manipulated landscapes for farming, ranching, and infrastructure. Given current conservation and revitalization efforts for tortoises and their habitats, here we investigate nineteenth and twentieth century Galápagos tortoise dietary ecology using museum and archaeological specimens coupled with analysis of carbon (δ13Ccollagen and δ13Capatite), nitrogen (δ15N), hydrogen (δD) and oxygen (δ18Oapatite) stable isotopes and radiocarbon dating. We identify that Galápagos tortoise diets vary between and within islands over time, and that long-term anthropogenic impacts influenced change in tortoise stable isotope ecology by using 57 individual tortoises from 10 different subspecies collected between 1833 and 1967-a 134-year period. On lower elevation islands, which are often hotter and drier, tortoises tend to consume more C4 vegetation (cacti and grasses). Our research suggests human exploitation of tortoises and anthropogenic impacts on vegetation contributed to the extinction of the Floreana Island tortoise (C. n. niger) in the 1850s.


Asunto(s)
Tortugas , Animales , Humanos , Niger , Ecología , Ecosistema , Agricultura
5.
Commun Biol ; 5(1): 546, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35681083

RESUMEN

The status of the Fernandina Island Galapagos giant tortoise (Chelonoidis phantasticus) has been a mystery, with the species known from a single specimen collected in 1906. The discovery in 2019 of a female tortoise living on the island provided the opportunity to determine if the species lives on. By sequencing the genomes of both individuals and comparing them to all living species of Galapagos giant tortoises, here we show that the two known Fernandina tortoises are from the same lineage and distinct from all others. The whole genome phylogeny groups the Fernandina individuals within a monophyletic group containing all species with a saddleback carapace morphology and one semi-saddleback species. This grouping of the saddleback species is contrary to mitochondrial DNA phylogenies, which place the saddleback species across several clades. These results imply the continued existence of lineage long considered extinct, with a current known population size of a single individual.


Asunto(s)
Tortugas , Animales , ADN Mitocondrial/genética , Femenino , Genoma , Humanos , Filogenia , Tortugas/genética
6.
Heredity (Edinb) ; 128(4): 261-270, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35217806

RESUMEN

The Galapagos Archipelago is recognized as a natural laboratory for studying evolutionary processes. San Cristóbal was one of the first islands colonized by tortoises, which radiated from there across the archipelago to inhabit 10 islands. Here, we sequenced the mitochondrial control region from six historical giant tortoises from San Cristóbal (five long deceased individuals found in a cave and one found alive during an expedition in 1906) and discovered that the five from the cave are from a clade that is distinct among known Galapagos giant tortoises but closely related to the species from Española and Pinta Islands. The haplotype of the individual collected alive in 1906 is in the same clade as the haplotype in the contemporary population. To search for traces of a second lineage in the contemporary population on San Cristóbal, we closely examined the population by sequencing the mitochondrial control region for 129 individuals and genotyping 70 of these for both 21 microsatellite loci and >12,000 genome-wide single nucleotide polymorphisms [SNPs]. Only a single mitochondrial haplotype was found, with no evidence to suggest substructure based on the nuclear markers. Given the geographic and temporal proximity of the two deeply divergent mitochondrial lineages in the historical samples, they were likely sympatric, raising the possibility that the lineages coexisted. Without the museum samples, this important discovery of an additional lineage of Galapagos giant tortoise would not have been possible, underscoring the value of such collections and providing insights into the early evolution of this iconic radiation.


Asunto(s)
Tortugas , Animales , ADN Mitocondrial/genética , Ecuador , Genoma , Haplotipos , Humanos , Repeticiones de Microsatélite , Museos , Filogenia , Tortugas/genética
7.
PeerJ ; 10: e12711, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35116195

RESUMEN

BACKGROUND: Declines of large-bodied herbivorous reptiles are well documented, but the consequences for ecosystem function are not. Understanding how large-bodied herbivorous reptiles engineer ecosystems is relevant given the current interest in restoration of tropical islands where extinction rates are disproportionately high and reptiles are prominent as herbivores. METHODS: In this study, we measured the ecosystem-level outcomes of long-term quasi-experiment represented by two adjacent islands within the Galapagos Archipelago, one with and the other without Galapagos land iguanas (Conolophus subcristatus), large-bodied herbivores known to feed on many plant species. We characterized plant communities on each island by developing high-resolution (<1 cm2) aerial imagery and delineating extent of plant associations and counting individual plants on each. RESULTS: In the presence of iguanas there was dramatically less woody plant cover, more area with seasonal grasses, and many fewer cacti. Cacti had a more clumped distribution where iguanas were absent than where iguanas were present. DISCUSSION: This study provided strong evidence that Galapagos land iguanas can substantially engineer the structure of terrestrial plant communities; therefore, restoration of large-bodied reptilian herbivores, such as land iguanas and giant tortoises, should be regarded as an important component of overall ecosystem restoration, especially for tropical islands from which they have been extirpated.


Asunto(s)
Iguanas , Lagartos , Tortugas , Animales , Ecosistema , Plantas
8.
Sci Rep ; 12(1): 1752, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110609

RESUMEN

Urbanization is the dominant trend of global land use change. The replicated nature of environmental change associated with urbanization should drive parallel evolution, yet insight into the repeatability of evolutionary processes in urban areas has been limited by a lack of multi-city studies. Here we leverage community science data on coat color in > 60,000 eastern gray squirrels (Sciurus carolinensis) across 43 North American cities to test for parallel clines in melanism, a genetically based trait associated with thermoregulation and crypsis. We show the prevalence of melanism was positively associated with urbanization as measured by impervious cover. Urban-rural clines in melanism were strongest in the largest cities with extensive forest cover and weakest or absent in cities with warmer winter temperatures, where thermal selection likely limits the prevalence of melanism. Our results suggest that novel traits can evolve in a highly repeatable manner among urban areas, modified by factors intrinsic to individual cities, including their size, land cover, and climate.


Asunto(s)
Melanosis , Sciuridae , Urbanización , Animales , Evolución Biológica , Color , Humanos , Temperatura
9.
PeerJ ; 8: e9921, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32995087

RESUMEN

The conservation and recovery of increasingly threatened tropical freshwater turtle populations depends on effective management plans and actions. Here we show that community-based actions saved Yellow-spotted river turtle (Podocnemis unifilis) eggs submerged by unseasonal flooding and ensured the release of hatchlings. We recovered 926 eggs and 65 premature hatchlings from 74 submerged nests at 16 flooded nesting areas along 75 km of waterways. The rescued eggs were transferred to a rearing center and incubated. Hatchlings emerged from eggs that had remained underwater for up to two days. Hatchlings were maintained in 250-500 L nursery tanks until yolk sac scars had closed. Healthy hatchlings were then immediately released around the original nesting areas. We released 599 hatchlings (60.4%) from 991 submerged eggs and hatchlings. Egg survival (61.7% (571/926)) was substantially less than hatchling survival (94.2% (599/636)) but within the expected range of values reported for this species. These findings suggest that Yellow-spotted river turtle eggs and embryos are resistant to short-term submersion, which could help explain the widespread distribution of this species across highly seasonal Amazonian rivers. Management plans should take the possible survival of submerged eggs into consideration as part of species conservation and recovery actions.

10.
Sci Rep ; 10(1): 8082, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32415212

RESUMEN

Substrate type determines nesting success and fitness in turtles and is a critical consideration for nesting area protection and restoration. Here, we evaluated the effect of substrate on nest removal by humans in the eastern Brazilian Amazon. We analyzed substrate composition and fate of 216 P. unifilis nests along 88 km of rivers. River segment and substrate type were the most important predictors of nest removal by humans. We found up to 36% lower removal of nests in fine sand and experimental results support the hypothesis that wind more often obscures tracks of nesting females in substrates with more (>66%) fine sand. Our findings are useful for informing the restoration of artificial nesting areas across the Amazon, as nesting area substrates should be selected not only to maintain hatchling sex ratios, but also to minimize nest removal by humans.


Asunto(s)
Conservación de los Recursos Naturales , Agua Dulce , Comportamiento de Nidificación , Arena/química , Animales , Brasil , Femenino , Humanos , Ríos , Tortugas
11.
PLoS One ; 15(2): e0229689, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32106260

RESUMEN

BACKGROUND: Conservation strategies are urgently needed for tropical turtles that are increasingly threatened by unsustainable exploitation. Studies conducted exclusively in temperate zones have revealed that typical turtle life history traits (including delayed sexual maturity and high adult survivorship) make sustainable harvest programs an unviable strategy for turtle conservation. However, most turtles are tropical in distribution and the tropics have higher, more constant and more extended ambient temperature regimes that, in general, are more favorable for population growth. METHODS: To estimate the capacity of temperate and tropical turtles to sustain harvest, we synthesized life-history traits from 165 predominantly freshwater turtle species in 12 families (Carettochelydae, Chelidae, Chelydridae, Dermatemydidae, Emydidae, Geoemydidae, Kinosternidae, Pelomedusidae, Platysternidae, Podocnemididae, Staurotypidae and Trionychidae). The influence of climate variables and latitude on turtle life-history traits (clutch size, clutch frequency, age at sexual maturity, and annual adult survival) were examined using Generalized Additive Models. The biological feasibility of sustainable harvest in temperate and tropical species was evaluated using a sensitivity analysis of population growth rates obtained from stage-structured matrix population models. RESULTS: Turtles at low latitudes (tropical zones) exhibit smaller clutch sizes, higher clutch frequency, and earlier age at sexual maturity than those at high latitudes (temperate zones). Adult survival increased weakly with latitude and declined significantly with increasing bioclimatic temperature (mean temperature of warmest quarter). A modeling synthesis of these data indicates that the interplay of life-history traits does not create higher harvest opportunity in adults of tropical species. Yet, we found potential for sustainable exploitation of eggs in tropical species. CONCLUSIONS: Sustainable harvest as a conservation strategy for tropical turtles appears to be as biologically problematic as in temperature zones and likely only possible if the focus is on limited harvest of eggs. Further studies are urgently needed to understand how the predicted population surplus in early life stages can be most effectively incorporated into conservation programs for tropical turtles.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Tortugas , Animales , Clima , Tamaño de la Nidada , Estudios de Factibilidad , Femenino , Agua Dulce , Rasgos de la Historia de Vida , Masculino , Dinámica Poblacional , Temperatura , Clima Tropical , Tortugas/crecimiento & desarrollo , Tortugas/fisiología
12.
PeerJ ; 7: e8156, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824769

RESUMEN

Restoration of keystone species is a primary strategy used to combat biodiversity loss and recover ecological services. This is particularly true for oceanic islands, which despite their small land mass, host a large fraction of the planet's imperiled species. The endemic Opuntia spp. cacti are one example and a major focus for restoration in the Galápagos archipelago, Ecuador. These cacti are keystone species that support much of the unique vertebrate animal community in arid zones, yet human activities have substantially reduced Opuntia populations. Extreme aridity poses an obstacle for quickly restoring Opuntia populations though water-saving technologies may provide a solution. The aim of this study was to evaluate current restoration efforts and the utility of two water-saving technologies as tools for the early stages of restoring Opuntia populations in the Galápagos archipelago. We planted 1,425 seedlings between 2013 and 2018, of which 66% had survived by the end of 2018. Compared with no-technology controls, seedlings planted with Groasis Waterboxx® water-saving technology (polypropylene trays with water reservoir and protective refuge for germinants) had a greater rate of survival in their first two-years of growth on one island (Plaza Sur) and greater growth rate on four islands whereas the "Cocoon" water-saving technology (similar technology but made of biodegradable fiber) did not affect growth and actually reduced seedling survival. Survival and growth rate were also influenced by vegetation zone, elevation, and precipitation in ways largely contingent on island. Overall, our findings suggest that water-saving technologies are not always universally applicable but can substantially increase the survival and growth rate of seedlings in certain conditions, providing in some circumstances a useful tool for improving restoration outcomes for rare plants of arid ecosystems.

13.
Environ Manage ; 64(1): 40-51, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31161233

RESUMEN

Integrating traditional ecological knowledge (TEK) with remote sensing capabilities to monitor rangeland dynamics could lead to more acceptable, efficient, and beneficial rangeland management schemes for stakeholders of grazing systems. We contrasted pastoralists' perception of summer pasture quality in the Altai Mountains of Central Asia with normalized difference vegetation index (NDVI) metrics obtained from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor. The spatial relationship between satellite-based assessment of the grassland quality and on-the-ground evaluation by local herders was first assessed for a single year using 49, 1 × 1 km grassland blocks sampled in July 2013. Herder-derived forage value was positively and strongly (63% of variance explained) related to satellite-derived NDVI values (MODIS 1 km monthly data, MOD13A3) as well as field estimates of % vegetation cover (62% explained) and to a lesser degree to vegetation height (28% explained). Herders' multi-year perception (i.e., recall ability) was also contrasted with satellite observations of their herding areas over the period of 2006-2016 during which NDVI temporal anomaly explained >11% of variance in estimates of pasture quality recalled. Few herders in Kazakhstan could recall pasture conditions, most herders in Russia and China could but inconsistently (4 and 7% variation explained, respectively), whereas most herders in Mongolia could recall pasture conditions in strong agreement with NDVI anomaly (30% variation explained), patterns reflecting herders' regional dependence on herding as a livelihood. Corroboration of herder-derived estimates and satellite-derived vegetation indices creates opportunity for re-expression of satellite data in map form as TEK-derived indices more compatible with herder perceptions.


Asunto(s)
Ecología , Tecnología de Sensores Remotos , China , Monitoreo del Ambiente , Mongolia , Imágenes Satelitales
14.
Ecology ; 100(6): e02658, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30998258

RESUMEN

To understand how migratory behavior evolved and to predict how migratory species will respond to global environmental change it is important to quantify the fitness consequences of intra- and inter-individual variation in migratory behavior. Intra-individual variation includes behavioral responses to changing environmental conditions and hence behavioral plasticity in the context of novel or variable conditions. Inter-individual variation determines the degree of variation on which selection can act and the rate of evolutionary responses to changes in average and extreme environmental conditions. Here we focus on variation in the partial migratory behavior of giant Galápagos tortoises (Chelonoidis spp.) and its energetic consequences. We evaluate the extent and mechanisms by which tortoises adjust migration timing in response to varying annual environmental conditions, and integrate movement data within a bioenergetic model of tortoise migration to quantify the fitness consequences of migration timing. We find strong inter-individual variation in the timing of migration, which was not affected by environmental conditions prevailing at the time of migration but rather by average expectations estimated from multi-annual averaged conditions. This variation is associated with an average annual loss in efficiency of ~15% relative to optimal timing based on year-specific conditions. These results point towards a limited ability of tortoises to adjust the timing of their migrations based on prevailing (and, by extension, future) conditions, suggesting that the adaptability of tortoise migratory behavior to changing conditions is predicated more by past "normal" conditions than responses to prevailing, changing conditions. Our work offers insights into the level of environmental-tuning in migratory behavior and a general framework for future research across taxa.


Asunto(s)
Tortugas , Migración Animal , Animales , Evolución Biológica , Herbivoria , Movimiento
15.
Conserv Biol ; 33(6): 1404-1414, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30901116

RESUMEN

Hybridization poses a major challenge for species conservation because it threatens both genetic integrity and adaptive potential. Yet, hybridization can occasionally offer unprecedented opportunity for species recovery if the genome of an extinct taxon is present among living hybrids such that selective breeding could recapture it. We explored the design elements for establishing a captive-breeding program for Galapagos tortoises (Chelonoidis spp.) built around individuals with admixed ancestry involving an extinct species. The target individuals were hybrids between the extinct species from Floreana Island, C. niger, and an extant species, C. becki, which were recently found in the endemic range of C. becki, from Wolf Volcano on Isabela Island. We combined genotypic data from 35 tortoises with high ancestry from C. niger with forward-in-time simulations to explore captive breeding strategies that maximized overall genetic diversity and ancestry from C. niger while accommodating resource constraints, species biology, and the urgency to return tortoises to Floreana Island for facilitating ecosystem restoration. Overall genetic diversity was maximized when in the simulation tortoises were organized in relatively small breeding groups. Substantial amounts of the C. niger genome were captured despite limited resources available for selectively breeding tortoises in captivity. Genetic diversity was maximized when captive-bred offspring were released to the wild rather than being used as additional breeders. Our results provide genetic-based and practical guidance on the inclusion of hybrids with genomic representation from extinct taxa into species restoration programs and informs the ongoing debate on the value of hybrids in biodiversity conservation.


Reproducción en Cautiverio Informada Genéticamente de Híbridos de una Especie Extinta de Tortuga de las Galápagos Resumen La hibridación representa un obstáculo importante para la conservación de especies ya que amenaza tanto a la integridad genética como al potencial adaptativo. Aun así, la hibridación ocasionalmente puede ofrecer una oportunidad sin precedentes para la recuperación de una especie si el genoma de un taxón extinto está presente entre los híbridos vivientes de tal manera que la reproducción selectiva pudiera recuperarlo. Exploramos los elementos de diseño para el establecimiento de un programa de reproducción en cautiverio de la tortuga de las Galápagos (Chelonoidis spp.) construido en torno a los individuos con linajes mixtos que incluyeran una especie extinta. Los individuos fueron los híbridos de la especie extinta en la Isla Floreana, C. niger, y la especie viviente C. becki, encontrados recientemente en la distribución geográfica endémica de la segunda especie en el Volcán Wolf (Isla Isabela). Combinamos los datos genotípicos de 35 tortugas con un linaje cargado de C. niger usando simulaciones futuras de la descendencia generada por el programa para explorar las estrategias de reproducción en cautiverio que maximizaran en general la diversidad genética y el linaje de C. niger a la vez que se ajustaba a las restricciones de recursos, la biología de la especie y la urgencia por regresar las tortugas a la Isla Floreana para facilitar la restauración del ecosistema. En general, la diversidad genética se maximizó cuando en la simulación las tortugas estuvieron organizadas en grupos de reproducción relativamente pequeños y cuando cantidades sustanciales del genoma de C. niger fueron capturados con base en los recursos disponibles para reproducir selectivamente a las tortugas en cautiverio. La diversidad genética se vio especialmente maximizada cuando las crías reproducidas en cautiverio fueron liberadas en lugar de ser utilizadas como reproductoras adicionales. Nuestros resultados proporcionan una guía práctica y basada en la genética para la inclusión de híbridos con representación genómica de un taxón extinto en los programas de restauración de especies. Cuando incorporamos a los híbridos con diversidad genética que previamente se creía perdida en los programas con el propósito de la reintroducción de especies, nuestro estudio informa al debate continuo sobre el valor de los híbridos para la conservación de la biodiversidad.


Asunto(s)
Tortugas , Animales , Cruzamiento , Conservación de los Recursos Naturales , Ecosistema , Islas
16.
Nat Ecol Evol ; 3(1): 87-95, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30510174

RESUMEN

Giant tortoises are among the longest-lived vertebrate animals and, as such, provide an excellent model to study traits like longevity and age-related diseases. However, genomic and molecular evolutionary information on giant tortoises is scarce. Here, we describe a global analysis of the genomes of Lonesome George-the iconic last member of Chelonoidis abingdonii-and the Aldabra giant tortoise (Aldabrachelys gigantea). Comparison of these genomes with those of related species, using both unsupervised and supervised analyses, led us to detect lineage-specific variants affecting DNA repair genes, inflammatory mediators and genes related to cancer development. Our study also hints at specific evolutionary strategies linked to increased lifespan, and expands our understanding of the genomic determinants of ageing. These new genome sequences also provide important resources to help the efforts for restoration of giant tortoise populations.


Asunto(s)
Envejecimiento/genética , Genoma , Tortugas/genética , Animales , Reparación del ADN/genética , Evolución Molecular , Células HEK293 , Humanos , Mediadores de Inflamación , Masculino , Neoplasias/genética , Filogenia , Densidad de Población
17.
Evol Appl ; 11(10): 1811-1821, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30459831

RESUMEN

Population genetic theory related to the consequences of rapid population decline is well-developed, but there are very few empirical studies where sampling was conducted before and after a known bottleneck event. Such knowledge is of particular importance for species restoration, given links between genetic diversity and the probability of long-term persistence. To directly evaluate the relationship between current genetic diversity and past demographic events, we collected genome-wide single nucleotide polymorphism data from prebottleneck historical (c.1906) and postbottleneck contemporary (c.2014) samples of Pinzón giant tortoises (Chelonoidis duncanensis; n = 25 and 149 individuals, respectively) endemic to a single island in the Galapagos. Pinzón giant tortoises had a historically large population size that was reduced to just 150-200 individuals in the mid 20th century. Since then, Pinzón's tortoise population has recovered through an ex situ head-start programme in which eggs or pre-emergent individuals were collected from natural nests on the island, reared ex situ in captivity until they were 4-5 years old and subsequently repatriated. We found that the extent and distribution of genetic variation in the historical and contemporary samples were very similar, with the latter group not exhibiting the characteristic genetic patterns of recent population decline. No population structure was detected either spatially or temporally. We estimated an effective population size (N e) of 58 (95% CI = 50-69) for the postbottleneck population; no prebottleneck N e point estimate was attainable (95% CI = 39-infinity) likely due to the sample size being lower than the true N e. Overall, the historical sample provided a valuable benchmark for evaluating the head-start captive breeding programme, revealing high retention of genetic variation and no skew in representation despite the documented bottleneck event. Moreover, this work demonstrates the effectiveness of head-starting in rescuing the Pinzón giant tortoise from almost certain extinction.

18.
J Hered ; 109(6): 611-619, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-29986032

RESUMEN

Genome-wide assessments allow for fuller characterization of genetic diversity, finer-scale population delineation, and better detection of demographically significant units to guide conservation compared with those based on "traditional" markers. Galapagos giant tortoises (Chelonoidis spp.) have long provided a case study for how evolutionary genetics may be applied to advance species conservation. Ongoing efforts to bolster tortoise populations, which have declined by 90%, have been informed by analyses of mitochondrial DNA sequence and microsatellite genotypic data, but could benefit from genome-wide markers. Taking this next step, we used double-digest restriction-site associated DNA sequencing to collect genotypic data at >26000 single nucleotide polymorphisms (SNPs) for 117 individuals representing all recognized extant Galapagos giant tortoise species. We then quantified genetic diversity, population structure, and compared results to estimates from mitochondrial DNA and microsatellite loci. Our analyses detected 12 genetic lineages concordant with the 11 named species as well as previously described structure within one species, C. becki. Furthermore, the SNPs provided increased resolution, detecting admixture in 4 individuals. SNP-based estimates of diversity and differentiation were significantly correlated with those derived from nuclear microsatellite loci and mitochondrial DNA sequences. The SNP toolkit presented here will serve as a resource for advancing efforts to understand tortoise evolution, species radiations, and aid conservation of the Galapagos tortoise species complex.


Asunto(s)
Especiación Genética , Variación Genética , Tortugas/genética , Animales , ADN Mitocondrial , Genoma , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Tortugas/clasificación
19.
PeerJ ; 6: e4856, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868271

RESUMEN

Law enforcement is widely regarded as a cornerstone to effective natural resource management. Practical guidelines for the optimal use of enforcement measures are lacking particularly in areas protected under sustainable and/or mixed use management regimes and where legal institution are weak. Focusing on the yellow-spotted river turtles (Podocnemis unifilis) along 33 km of river that runs between two sustainable-use reserves in the Brazilian Amazon as an illustrative example, we show that two years of patrols to enforce lawful protection regulations had no effect on nest harvesting. In contrast, during one year when community-based management approaches were enacted harvest levels dropped nearly threefold to a rate (26%) that is likely sufficient for river turtle population recovery. Our findings support previous studies that show how community participation, if appropriately implemented, can facilitate effective natural resource management where law enforcement is limited or ineffective.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...