Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0298748, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630734

RESUMEN

Although histone proteins are widely known for their intranuclear functions where they organize DNA, all five histone types can also be released into the extracellular space from damaged cells. Extracellular histones can interact with pattern recognition receptors of peripheral immune cells, including toll-like receptor 4 (TLR4), causing pro-inflammatory activation, which indicates they may act as damage-associated molecular patterns (DAMPs) in peripheral tissues. Very limited information is available about functions of extracellular histones in the central nervous system (CNS). To address this knowledge gap, we applied mixed histones (MH) to cultured cells modeling neurons, microglia, and astrocytes. Microglia are the professional CNS immunocytes, while astrocytes are the main support cells for neurons. Both these cell types are critical for neuroimmune responses and their dysregulated activity contributes to neurodegenerative diseases. We measured effects of extracellular MH on cell viability and select neuroimmune functions of microglia and astrocytes. MH were toxic to cultured primary murine neurons and also reduced viability of NSC-34 murine and SH-SY5Y human neuron-like cells in TLR4-dependent manner. MH did not affect the viability of resting or immune-stimulated BV-2 murine microglia or U118 MG human astrocytic cells. When applied to BV-2 cells, MH enhanced secretion of the potential neurotoxin glutamate, but did not modulate the release of nitric oxide (NO), tumor necrosis factor-α (TNF), C-X-C motif chemokine ligand 10 (CXCL10), or the overall cytotoxicity of lipopolysaccharide (LPS)- and/or interferon (IFN)-γ-stimulated BV-2 microglial cells towards NSC-34 neuron-like cells. We demonstrated, for the first time, that MH downregulated phagocytic activity of LPS-stimulated BV-2 microglia. However, MH also exhibited protective effect by ameliorating the cytotoxicity of LPS-stimulated U118 MG astrocytic cells towards SH-SY5Y neuron-like cells. Our data demonstrate extracellular MH could both damage neurons and alter neuroimmune functions of glial cells. These actions of MH could be targeted for treatment of neurodegenerative diseases.


Asunto(s)
Neuroblastoma , Enfermedades Neurodegenerativas , Ratones , Humanos , Animales , Histonas/metabolismo , Receptor Toll-Like 4/metabolismo , Lipopolisacáridos/farmacología , Neuroblastoma/metabolismo , Microglía/metabolismo , Células Cultivadas , Enfermedades Neurodegenerativas/metabolismo
2.
J Hazard Mater ; 469: 134017, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38518696

RESUMEN

Our study explores the pressing issue of micro- and nanoplastics (MNPs) inhalation and their subsequent penetration into the brain, highlighting a significant environmental health concern. We demonstrate that MNPs can indeed penetrate murine brain, warranting further investigation into their neurotoxic effects in humans. We then proceed to test the impact of MNPs at environmentally relevant concentrations, with focusing on variations in size and shape. Our findings reveal that these MNPs induce oxidative stress, cytotoxicity, and neurodegeneration in human neurons, with cortical neurons being more susceptible than nociceptors. Furthermore, we examine the role of biofilms on MNPs, demonstrating that MNPs can serve as a vehicle for pathogenic biofilms that significantly exacerbate these neurotoxic effects. This sequence of investigations reveals that minimal MNPs accumulation can cause oxidative stress and neurodegeneration in human neurons, significantly risking brain health and highlights the need to understand the neurological consequences of inhaling MNPs. Overall, our developed in vitro testing battery has significance in elucidating the effects of environmental factors and their associated pathological mechanisms in human neurons.


Asunto(s)
Microplásticos , Síndromes de Neurotoxicidad , Humanos , Animales , Ratones , Especies Reactivas de Oxígeno , Biopelículas , Encéfalo , Neuronas , Plásticos
3.
Cell Rep ; 43(2): 113812, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377003

RESUMEN

The ability of the mammalian brain to maintain spatial representations of external or internal information for short periods of time has been associated with sustained neuronal spiking and reverberatory neural network activity in the medial entorhinal cortex. Here, we show that conditional genetic deletion of netrin-1 or the netrin receptor deleted-in-colorectal cancer (DCC) from forebrain excitatory neurons leads to deficits in short-term spatial memory. We then demonstrate that conditional deletion of either netrin-1 or DCC inhibits cholinergic persistent firing and show that cholinergic activation of muscarinic receptors expressed by entorhinal cortical neurons promotes persistent firing by recruiting DCC to the plasma membrane. Together, these findings indicate that normal short-term spatial memory function requires the synergistic actions of acetylcholine and netrin-1.


Asunto(s)
Acetilcolina , Corteza Entorrinal , Animales , Acetilcolina/farmacología , Netrina-1 , Prosencéfalo , Colinérgicos , Mamíferos
4.
Neurosci Res ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38278218

RESUMEN

Histones organize DNA within cellular nuclei, but they can be released from damaged cells. In peripheral tissues extracellular histones act as damage-associated molecular patterns (DAMPs) inducing pro-inflammatory activation of immune cells. Limited studies have considered DAMP-like activity of histones in the central nervous system (CNS); therefore, we studied the effects of extracellular histones on microglia, the CNS immunocytes, and on neuronal cells. Both the linker histone H1 and the core histone H3 induced pro-inflammatory activation of microglia-like cells by upregulating their secretion of NO and cytokines, including interferon-γ-inducible protein 10 (IP-10) and tumor necrosis factor-α (TNF). The selective inhibitors MMG-11 and TAK-242 were used to demonstrate involvement of toll-like receptors (TLR) 2 and 4, respectively, in H1-induced NO secretion by BV-2 microglia. H1, but not H3, downregulated the phagocytic activity of BV-2 microglia. H1 was also directly toxic to all neuronal cell types studied. We conclude that H1, and to a lesser extent H3, when released extracellularly, have the potential to act as a CNS DAMPs. Inhibition of the DAMP-like effects of extracellular histones on microglia and their neurotoxic activity represents a potential strategy for combating neurodegenerative diseases that are characterized by the adverse activation of microglia and neuronal death.

5.
PLoS One ; 18(7): e0289169, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37498903

RESUMEN

The phagocytic activity of glial cells is essential for maintaining normal brain activity, and its dysfunction may contribute to the central nervous system (CNS) pathologies, including neurodegenerative diseases. Phagocytic activity is one of the well-established neuroimmune functions of microglia. Although emerging evidence indicates that astrocytes can also function as CNS phagocytes in humans and rodents, limited information is available about the molecular mechanism regulating this function. To address this knowledge gap, we studied modulation of the phagocytic activity of human U118 MG astrocytic cells and murine primary astrocytes by four CNS inflammatory mediators and bacterial endotoxin lipopolysaccharide (LPS). LPS and cytochrome c (CytC) upregulated, while interferon (IFN)-γ downregulated, phagocytosis of latex beads by human astrocytic cells and phagocytosis of synaptosomes by murine primary astrocytes. Interleukin (IL)-1ß and tumor necrosis factor (TNF)-α had no effect on the phagocytic activity of human astrocytic cells but upregulated this function in murine astrocytes. Varying effects of combinations of the above inflammatory mediators were observed in these two cell types. LPS- and CytC-induced phagocytic activity of human astrocytic cells was partially mediated by activation of toll-like receptor 4 (TLR4). By monitoring other functions of astrocytes, we concluded there were no correlations between the effects of the mediators studied on astrocyte phagocytic activity and their secretion of cytokines, cytotoxins, or glutamate. Our study identified four candidate CNS regulators of astrocyte phagocytic activity. Future investigation of molecular mechanisms behind this regulation could identify novel therapeutic targets allowing modulation of this astrocyte-mediated clearance mechanism in CNS pathologies.


Asunto(s)
Astrocitos , Lipopolisacáridos , Ratones , Animales , Humanos , Lipopolisacáridos/farmacología , Células Cultivadas , Microglía/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Fagocitos/metabolismo , Encéfalo/metabolismo , Mediadores de Inflamación/farmacología
6.
Brain Res ; 1807: 148315, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36878343

RESUMEN

Microglia are the resident immune cells of the brain which regulate both the innate and adaptive neuroimmune responses in health and disease. In response to specific endogenous and exogenous stimuli, microglia transition to one of their reactive states characterized by altered morphology and function, including their secretory profile. A component of the microglial secretome is cytotoxic molecules capable of causing damage and death to nearby host cells, thus contributing to the pathogenesis of neurodegenerative disorders. Indirect evidence from secretome studies and measurements of mRNA expression using diverse microglial cell types suggest different stimuli may induce microglia to secrete distinct subsets of cytotoxins. We demonstrate the accuracy of this hypothesis directly by challenging murine BV-2 microglia-like cells with eight different immune stimuli and assessing secretion of four potentially cytotoxic molecules, including nitric oxide (NO), tumor necrosis factor α (TNF), C-X-C motif chemokine ligand 10 (CXCL10), and glutamate. Lipopolysaccharide (LPS) and a combination of interferon (IFN)-γ plus LPS induced secretion of all toxins studied. IFN-ß, IFN-γ, polyinosinic:polycytidylic acid (poly I:C), and zymosan A upregulated secretion of subsets of these four cytotoxins. LPS and IFN-γ, alone or in combination, as well as IFN-ß induced toxicity of BV-2 cells towards murine NSC-34 neuronal cells, while ATP, N-formylmethionine-leucyl-phenylalanine (fMLP), and phorbol 12-myristate 13-acetate (PMA) did not affect any parameters studied. Our observations contribute to a growing body of knowledge on the regulation of the microglial secretome, which may inform future development of novel therapeutics for neurodegenerative diseases, where dysregulated microglia are key contributors to pathogenesis.


Asunto(s)
Microglía , Neurotoxinas , Ratones , Animales , Microglía/metabolismo , Neurotoxinas/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Interferón gamma/farmacología , Interferón gamma/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Citotoxinas/metabolismo , Citotoxinas/farmacología
7.
Mol Cell Neurosci ; 124: 103804, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36592800

RESUMEN

Cardiolipin is a mitochondrial phospholipid that is also detected in serum inferring its extracellular release; however, this process has not been directly demonstrated for any of the brain cell types. Nevertheless, extracellular cardiolipin has been shown to modulate several neuroimmune functions of microglia and astrocytes, including upregulation of their endocytic activity. Low cardiolipin levels are associated with brain aging, and may thus hinder uptake of amyloid-ß (Αß) in Alzheimer's disease. We hypothesized that glial cells are one of the sources of extracellular cardiolipin in the brain parenchyma where this phospholipid interacts with neighboring cells to upregulate the endocytosis of Αß. Liquid chromatography-mass spectrophotometry identified 31 different species of cardiolipin released from murine BV-2 microglial cells and revealed this process was accelerated by exposure to Aß42. Extracellular cardiolipin upregulated internalization of fluorescently-labeled Aß42 by primary murine astrocytes, human U118 MG astrocytic cells, and murine BV-2 microglia. Increased endocytic activity in the presence of extracellular cardiolipin was also demonstrated by studying uptake of Aß42 and pHrodo™ Bioparticles™ by human induced pluripotent stem cells (iPSCs)-derived microglia, as well as iPSC-derived human brain organoids containing microglia, astrocytes, oligodendrocytes and neurons. Our observations indicate that Aß42 augments the release of cardiolipin from microglia into the extracellular space, where it can act on microglia and astrocytes to enhance their endocytosis of Aß42. Our observations suggest that the reduced glial uptake of Aß due to the decreased levels of cardiolipin could be at least partially responsible for the extracellular accumulation of Aß in aging and Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Microglía/metabolismo , Cardiolipinas/metabolismo , Enfermedad de Alzheimer/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Neuroglía/metabolismo , Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo
8.
J Neurosci ; 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35882556

RESUMEN

The activation of self-destructive cellular programs helps sculpt the nervous system during development, but the molecular mechanisms used are not fully understood. Prior studies have investigated the role of the APP in the developmental degeneration of sensory neurons with contradictory results. In this work, we sought to elucidate the impact of APP deletion in the development of the sensory nervous system in vivo and in vitro. Our in vivo data show an increase in the number of sciatic nerve axons in adult male and female APP-null mice, consistent with the hypothesis that APP plays a pro-degenerative role in the development of peripheral axons. In vitro, we show that genetic deletion of APP delays axonal degeneration triggered by nerve growth factor deprivation, indicating that APP does play a pro-degenerative role. Interestingly, APP depletion does not affect caspase-3 levels but significantly attenuates the rise of axoplasmic Ca2+ that occurs during degeneration. We examined intracellular Ca2+ mechanisms that could be involved and found that APP-null DRG neurons had increased Ca2+ levels within the endoplasmic reticulum and enhanced store-operated Ca2+ entry. We also observed that DRG axons lacking APP have more mitochondria than their WT counterparts, but these display a lower mitochondrial membrane potential. Finally, we present evidence that APP deficiency causes an increase in mitochondrial Ca2+ buffering capacity. Our results support the hypothesis that APP plays a pro-degenerative role in the developmental degeneration of DRG sensory neurons, and unveil the importance of APP in the regulation of calcium signaling in sensory neurons.Significance Statement:The nervous system goes through a phase of pruning and programmed neuronal cell death during development to reach maturity. In such context, the role played by the APP in the peripheral nervous system has been controversial, ranging from pro-survival to pro-degenerative. Here we present evidence in vivo and in vitro supporting the pro-degenerative role of APP, demonstrating the ability of APP to alter intracellular Ca2+ homeostasis and mitochondria, critical players of programmed cell death. This work provides a better understanding of the physiological function of APP and its implication in developmental neuronal death in the nervous system.

9.
Mediators Inflamm ; 2022: 9946439, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35369030

RESUMEN

Alzheimer's disease (AD) is characterized by chronic neuroinflammation, which is partially mediated by dysregulated functions of glial cells. Cardiolipin (CL) is a phospholipid normally confined to the inner mitochondrial membrane; however, it has been detected in human sera, indicating that it can exist in the extracellular space where it may interact with nearby cells. Although CL has been shown to modulate several functions of microglia in a toll-like receptor (TLR) 4-dependent manner, the effects of extracellular CL on astrocytes are unknown. In addition to their homeostatic functions, astrocytes participate in neuroimmune responses of the brain and express TLR 4. Therefore, we hypothesized that extracellular CL (1) modulates the secretion of cytokines and cytotoxins by astrocytes, as well as their phagocytic activity, and (2) acts by interacting with astrocyte TLR 4. We demonstrate that CL inhibits the lipopolysaccharide- (LPS-) induced secretion of cytotoxins and expression of glial fibrillary acidic protein (GFAP) by human U118 MG astrocytic cells. CL alone upregulates the phagocytic activity of human astrocytic cells and primary murine astrocytes. CL in combination with LPS upregulates secretion of interleukin (IL)-1ß by astrocytic cells. Furthermore, CL alone increases the secretion of monocyte chemoattractant protein (MCP)-1 by astrocytic cells, which is blocked by the TLR 4-specific antagonist TAK-242. We demonstrate that CL upregulates MCP-1 secretion in the absence of its natural carrier protein, ß2-glycoprotein 1, indicating that CL may be bioactive in the brain where this protein is not present. Lastly, we show that CL downregulates the expression of astrocytic TLR 4, implying that CL engages this receptor, as its activation has been shown to lead to its degradation. Overall, our study extends the list of cell type functions of which CL modulates and provides evidence that CL, or liposomes containing this phospholipid can be used to modulate specific neuroimmune functions of astrocytes.


Asunto(s)
Astrocitos , Receptor Toll-Like 4 , Animales , Astrocitos/metabolismo , Cardiolipinas/metabolismo , Cardiolipinas/farmacología , Humanos , Inmunidad , Ratones , Microglía/metabolismo , Receptor Toll-Like 4/metabolismo
10.
Front Mol Neurosci ; 15: 852181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370552

RESUMEN

Axons that are physically separated from their soma activate a series of signaling events that results in axonal self-destruction. A critical element of this signaling pathway is an intra-axonal calcium rise that occurs just prior to axonal fragmentation. Previous studies have shown that preventing this calcium rise delays the onset of axon fragmentation, yet the ion channels responsible for the influx, and the mechanisms by which they are activated, are largely unknown. Axonal injury can be modeled in vitro by transecting murine dorsal root ganglia (DRG) sensory axons. We coupled transections with intra-axonal calcium imaging and found that Ca2+ influx is sharply reduced in axons lacking trpv1 (for transient receptor potential cation channel vanilloid 1) and in axons treated with capsazepine (CPZ), a TRPV1 antagonist. Sensory neurons from trpv1 -/- mice were partially rescued from degeneration after transection, indicating that TRPV1 normally plays a pro-degenerative role after axonal injury. TRPV1 activity can be regulated by direct post-translational modification induced by reactive oxygen species (ROS). Here, we tested the hypothesis that mitochondrial ROS production induced by axotomy is required for TRPV1 activity and subsequent axonal degeneration. We found that reducing mitochondrial depolarization with NAD+ supplementation or scavenging ROS using NAC or MitoQ sharply attenuates TRPV1-dependent calcium influx induced by axotomy. This study shows that ROS-dependent TRPV1 activation is required for Ca2+ entry after axotomy.

11.
Front Behav Neurosci ; 16: 842552, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35283743

RESUMEN

The p75 neurotrophin receptor (p75NTR) is implicated in various biological functions during development and adulthood. Several animal models have been developed to identify the roles of p75NTR in vivo and in vitro. P75NTRExonIII knock-out mice are widely used to study the neurotrophin receptor and its signaling pathways. Similar to other models of p75NTR knock-out (p75NTRExon IV KO) or conditional knock-out (p75NTRfl/fl) mice, p75NTRExonIII knock-out mice present severe abnormalities in walking, gait, balance and strength. The present study identifies a sexual dimorphism in the p75NTRExonIII knock-out strain regarding balance and coordination. Using Kondziela's inverted grid test, we observed that p75NTRExonIII knock-out males performed poorly at the task, whereas p75NTRExonIII knock-out females did not exhibit any defects. We also observed that female p75NTRExonIII knock-out mice performed significantly better than male p75NTRExonIII knock-out mice at the beam balance test. There were no differences in strength, skin innervation, or the number of ulcers on the toes between p75NTRExonIII knock-out males and females. The literature regarding the role of p75NTR in behavior is controversial; our results suggest that studies investigating the role of p75NTR in vivo using p75NTR knock-out mice should systematically report data from males and females.

12.
eNeuro ; 8(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33372032

RESUMEN

The nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are trophic factors required by distinct population of sensory neurons during development of the nervous system. Neurons that fail to receive appropriate trophic support are lost during this period of naturally occurring cell death. In the last decade, our understanding of the signaling pathways regulating neuronal death following NGF deprivation has advanced substantially. However, the signaling mechanisms promoting BDNF deprivation-induced sensory neuron degeneration are largely unknown. Using a well-established in vitro culture model of dorsal root ganglion (DRG), we have examined degeneration mechanisms triggered on BDNF withdrawal in sensory neurons. Our results indicate differences and similarities between the molecular signaling pathways behind NGF and BDNF deprivation-induced death. For instance, we observed that the inhibition of Trk receptors (K252a), PKC (Gö6976), protein translation (cycloheximide; CHX), or caspases (zVAD-fmk) provides protection from NGF deprivation-induced death but not from degeneration evoked by BDNF-withdrawal. Interestingly, degeneration of BDNF-dependent sensory neurons requires BAX and appears to rely on reactive oxygen species (ROS) generation rather than caspases to induce degeneration. These results highlight the complexity and divergence of mechanisms regulating developmental sensory neuron death.


Asunto(s)
Ganglios Espinales , Factor de Crecimiento Nervioso , Factor Neurotrófico Derivado del Encéfalo , Células Cultivadas , Neuronas Aferentes , Células Receptoras Sensoriales , Transducción de Señal
13.
eNeuro ; 6(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-30838324

RESUMEN

Development of the nervous system relies on a balance between axon and dendrite growth and subsequent pruning and degeneration. The developmental degeneration of dorsal root ganglion (DRG) sensory axons has been well studied in part because it can be readily modeled by removing the trophic support by nerve growth factor (NGF) in vitro. We have recently reported that axonal fragmentation induced by NGF withdrawal is dependent on Ca2+, and here, we address the mechanism of Ca2+ entry required for developmental axon degeneration of mouse embryonic DRG neurons. Our results show that the transient receptor potential vanilloid family member 1 (TRPV1) cation channel plays a critical role mediating Ca2+ influx in DRG axons withdrawn from NGF. We further demonstrate that TRPV1 activation is dependent on reactive oxygen species (ROS) generation that is driven through protein kinase C (PKC) and NADPH oxidase (NOX)-dependent pathways that become active upon NGF withdrawal. These findings demonstrate novel mechanistic links between NGF deprivation, PKC activation, ROS generation, and TRPV1-dependent Ca2+ influx in sensory axon degeneration.


Asunto(s)
Axones/metabolismo , Calcio/metabolismo , Ganglios Espinales/embriología , Ganglios Espinales/metabolismo , Degeneración Nerviosa/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Cationes Bivalentes/metabolismo , Células Cultivadas , Ganglios Espinales/citología , Ratones Endogámicos C57BL , Ratones Transgénicos , NADPH Oxidasas/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Proteína Quinasa C/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPV/genética
14.
Cell Rep ; 25(1): 168-182.e6, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30282026

RESUMEN

Dynamic trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors (AMPARs) to synapses is critical for activity-dependent synaptic plasticity underlying learning and memory, but the identity of key molecular effectors remains elusive. Here, we demonstrate that membrane depolarization and N-methyl-D-aspartate receptor (NMDAR) activation triggers secretion of the chemotropic guidance cue netrin-1 from dendrites. Using selective genetic deletion, we show that netrin-1 expression by excitatory neurons is required for NMDAR-dependent long-term potentiation (LTP) in the adult hippocampus. Furthermore, we demonstrate that application of exogenous netrin-1 is sufficient to trigger the potentiation of excitatory glutamatergic transmission at hippocampal Schaffer collateral synapses via Ca2+-dependent recruitment of GluA1-containing AMPARs, promoting the maturation of immature or nascent synapses. These findings identify a central role for activity-dependent release of netrin-1 as a critical effector of synaptic plasticity in the adult hippocampus.


Asunto(s)
Hipocampo/metabolismo , Netrina-1/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Potenciación a Largo Plazo/fisiología , Ratones , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
15.
eNeuro ; 5(4)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30225353

RESUMEN

Leucine-rich glioma-inactivated protein 1 (LGI1) is a secreted neuronal protein and a Nogo receptor 1 (NgR1) ligand. Mutations in LGI1 in humans causes autosomal dominant lateral temporal lobe epilepsy and homozygous deletion of LGI1 in mice results in severe epileptic seizures that cause early postnatal death. NgR1 plays an important role in the development of CNS synapses and circuitry by limiting plasticity in the adult cortex via the activation of RhoA. These relationships and functions prompted us to examine the effect of LGI1 on synapse formation in vitro and in vivo. We report that application of LGI1 increases synaptic density in neuronal culture and that LGI1 null hippocampus has fewer dendritic mushroom spines than in wild-type (WT) littermates. Further, our electrophysiological investigations demonstrate that LGI1 null hippocampal neurons possess fewer and weaker synapses. RhoA activity is significantly increased in cortical cultures derived from LGI1 null mice and using a reconstituted system; we show directly that LGI1 antagonizes NgR1-tumor necrosis factor receptor orphan Y (TROY) signaling. Our data suggests that LGI1 enhances synapse formation in cortical and hippocampal neurons by reducing NgR1 signaling.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/fisiología , Neocórtex/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Receptor Nogo 1/metabolismo , Proteínas/fisiología , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/fisiología , Sinapsis/fisiología , Proteínas de Unión al GTP rho/metabolismo , Animales , Embrión de Mamíferos , Epilepsia , Femenino , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Proteína de Unión al GTP rhoA
16.
PLoS One ; 13(7): e0199570, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30020957

RESUMEN

Axons normally degenerate during development of the mammalian nervous system, but dysregulation of the same genetically-encoded destructive cellular machinery can destroy crucial structures during adult neurodegenerative diseases. Nerve growth factor (NGF) withdrawal from dorsal root ganglia (DRG) axons is a well-established in vitro experimental model for biochemical and cell biological studies of developmental degeneration. Definitive methods for measuring axon degeneration have been lacking and here we report a novel method of axon degeneration quantification from bulk cultures of DRG that enables objective and automated measurement of axonal density over the entire field of radial axon outgrowth from the ganglion. As proof of principal, this new method, written as an R script called Axoquant 2.0, was used to examine the role of extracellular Ca2+ in the execution of cytoskeletal disassembly during degeneration of NGF-deprived DRG axons. This method can be easily applied to examine degenerative or neuroprotective effects of gene manipulations and pharmacological interventions.


Asunto(s)
Axones/metabolismo , Neuronas/metabolismo , Axones/patología , Biomarcadores , Calcio/metabolismo , Quelantes del Calcio/farmacología , Células Cultivadas , Ácido Egtácico/farmacología , Técnica del Anticuerpo Fluorescente , Ganglios Espinales/metabolismo , Inmunohistoquímica , Imagen Molecular/métodos , Factor de Crecimiento Nervioso/metabolismo , Neuronas/patología , Tubulina (Proteína)/metabolismo
17.
Neuroscientist ; 23(6): 587-604, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28303740

RESUMEN

Neurotrophins have been intensively studied and have multiple roles in the brain. Neurotrophins are first synthetized as proneurotrophins and then cleaved intracellularly and extracellularly. Increasing evidences demonstrate that proneurotrophins and mature neurotrophins exerts opposing role in the central nervous system. In the present review, we explore the role of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4) and their respective proform in cellular processes related to learning and memory. We focused on their roles in synaptic activity and plasticity in the brain with an emphasis on long-term potentiation, long-term depression, and basal synaptic transmission in the hippocampus and the temporal lobe area. We also discuss new findings on the role of the Val66Met polymorphism on the BDNF propeptide on synaptic activity.


Asunto(s)
Encéfalo/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo , Animales , Humanos
18.
Bioorg Med Chem ; 24(19): 4759-4765, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27567078

RESUMEN

Mature neurotrophins as well as their pro forms are critically involved in the regulation of neuronal functions. They are signaling through three distinct types of receptors: tropomyosin receptor kinase family (TrkA/B/C), p75 neurotrophin receptor (p75(NTR)) and sortilin. Aberrant expression of p75(NTR) in the CNS is implicated in a variety of neurodegenerative diseases, including Alzheimer's disease. The goal of this work was to evaluate one of the very few reported p75(NTR) small molecule ligands as a lead compound for development of novel PET radiotracers for in vivo p75(NTR) imaging. Here we report that previously described ligand LM11A-24 shows significant inhibition of carbachol-induced persistent firing (PF) of entorhinal cortex (EC) pyramidal neurons in wild-type mice via selective interaction with p75(NTR). Based on this electrophysiological assay, the compound has very high potency with an EC50<10nM. We optimized the radiosynthesis of [(11)C]LM11A-24 as the first attempt to develop PET radioligand for in vivo imaging of p75(NTR). Despite some weak interaction with CNS tissues, the radiolabeled compound showed unfavorable in vivo profile presumably due to high hydrophilicity.


Asunto(s)
Cafeína/análogos & derivados , Tomografía de Emisión de Positrones/métodos , Receptor de Factor de Crecimiento Nervioso/metabolismo , Animales , Cafeína/metabolismo , Cafeína/farmacocinética , Radioisótopos de Carbono/metabolismo , Radioisótopos de Carbono/farmacocinética , Sistema Nervioso Central/diagnóstico por imagen , Sistema Nervioso Central/metabolismo , Ratones Endogámicos C57BL
19.
FASEB J ; 30(9): 3083-90, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27189977

RESUMEN

Hippocampal long-term depression (LTD) is an active form of synaptic plasticity that is necessary for consolidation of spatial memory, contextual fear memory, and novelty acquisition. Recent studies have shown that caspases (CASPs) play an important role in NMDA receptor-dependent LTD and are involved in postsynaptic remodeling and synaptic maturation. In the present study, we examined the role of X-linked inhibitor of apoptosis (XIAP), a putative endogenous CASP inhibitor, in synaptic plasticity in the hippocampus. Analysis in acute brain slices and in cultured hippocampal neurons revealed that XIAP deletion increases CASP-3 activity, enhances α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization, sharply increases LTD, and significantly reduces synapse density. In vivo behaviors related to memory were also altered in XIAP(-/-) mice, with faster acquisition of spatial object location and increased fear memory observed. Together, these results indicate that XIAP plays an important physiologic role in regulating sublethal CASP-3 activity within central neurons and thereby facilitates synaptic plasticity and memory acquisition.-Gibon, J., Unsain, N., Gamache, K., Thomas, R. A., De Leon, A., Johnstone, A., Nader, K., Séguéla, P., Barker, P. A. The X-linked inhibitor of apoptosis regulates long-term depression and learning rate.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas Inhibidoras de la Apoptosis/metabolismo , Memoria/fisiología , Plasticidad Neuronal/fisiología , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Hipocampo/citología , Hipocampo/fisiología , Proteínas Inhibidoras de la Apoptosis/genética , Masculino , Ratones , Ratones Noqueados , Neuronas/fisiología
20.
Mol Brain ; 9: 23, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26932787

RESUMEN

BACKGROUND: Sustained, persistent firing (PF) of cortical pyramidal neurons following a short depolarization is a crucial cellular mechanism required for spatial and working memory. Pyramidal neurons in the superficial and deep layers of the medial and lateral entorhinal cortex (EC) display this property of prolonged firing activity. Here, we focused on the regulation of this activity in EC neurons by mature brain derived neurotrophic factor (BDNF) and its precursor proBDNF. RESULTS: Using patch clamp electrophysiology in acute mouse cortical slices, we observed that BDNF facilitates cholinergic PF in pyramidal neurons in layer V of the medial EC. Inhibition of TrkB with K252a blocks the potentiating effect of BDNF whereas inhibition of p75NTR with function-blocking antibodies does not. By recording spontaneous excitatory post-synaptic currents (sEPSC), we find that BDNF acts pre-synaptically via TrkB to increase glutamate release whereas proBDNF acting via p75NTR acts to reduce it. MPEP abolished the facilitating effect of BDNF on PF, demonstrating that the metabotropic glutamate receptor mGluR5 plays a critical role in the BDNF effect. In contrast, paired pulse ratio and EPSC measurements indicated that proBDNF, via presynaptic p75NTR, is a negative regulator of glutamate release in the EC. CONCLUSIONS: Taken together, our findings demonstrate that the BDNF/TrkB pathway facilitates persistent activity whereas the proBDNF/p75NTR pathway inhibits this mnemonic property of entorhinal pyramidal neurons.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Entorrinal/metabolismo , Terminales Presinápticos/metabolismo , Precursores de Proteínas/metabolismo , Potenciales de Acción , Animales , Neuronas Colinérgicas/metabolismo , Glutamatos , Masculino , Ratones Endogámicos C57BL , Modelos Neurológicos , Biosíntesis de Proteínas , Células Piramidales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...