Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cancers (Basel) ; 15(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36765664

RESUMEN

B-cell acute lymphoblastic leukemia (ALL) is derived from an accumulation of malignant, immature B cells in the bone marrow and blood. Relapse due, in part, to the emergence of tumor cells that are resistant to front line standard chemotherapy is associated with poor patient outcomes. This challenge highlights the need for new treatment strategies to eliminate residual chemoresistant tumor cells. Based on the use of pitavastatin in acute myeloid leukemia (AML), we evaluated its efficacy in an REH ALL cell line derived to be resistant to vincristine. We found that pitavastatin inhibited the proliferation of both parental and vincristine-resistant REH tumor cells at an IC50 of 449 nM and 217 nM, respectively. Mitochondrial bioenergetic assays demonstrated that neither vincristine resistance nor pitavastatin treatment affected cellular oxidative phosphorylation, beta-oxidation, or glycolytic metabolism in ALL cells. In a co-culture model of ALL cells with bone marrow stromal cells, pitavastatin significantly decreased cell viability more robustly in the vincristine-resistant ALL cells compared with their parental controls. Subsequently, NSG mice were used to develop an in vivo model of B-cell ALL using both parental and vincristine-resistant ALL cells. Pitavastatin (10 mg/kg i.p.) significantly reduced the number of human CD45+ REH ALL cells in the bone marrow of mice after 4 weeks of treatment. Mechanistic studies showed that pitavastatin treatment in the vincristine-resistant cells led to apoptosis, with increased levels of cleaved PARP and protein-signaling changes for AMP-activated protein kinase/FoxO3a/Puma. Our data suggest the possible repurposing of pitavastatin as a chemotherapeutic agent in a model of vincristine-resistant B-cell ALL.

2.
Cancers (Basel) ; 14(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35681662

RESUMEN

The lack of complete therapeutic success in the treatment of B-cell acute lymphoblastic leukemia (ALL) has been attributed, in part, to a subset of cells within the bone marrow microenvironment that are drug resistant. Recently, the cholesterol synthesis inhibitor, pitavastatin (PIT), was shown to be active in acute myeloid leukemia, prompting us to evaluate it in our in vitro co-culture model, which supports a chemo-resistant ALL population. We used phospho-protein profiling to evaluate the use of lipid metabolic active compounds in these chemo-resistant cells, due to the up-regulation of multiple active survival signals. In a co-culture with stromal cells, a shift towards anabolic processes occurred, which was further confirmed by assays showing increased lipid content. The treatment of REH leukemia cells with pitavastatin in the co-culture model resulted in significantly higher leukemic cell death than exposure to the standard-of-care chemotherapeutic agent, cytarabine (Ara-C). Our data demonstrates the use of pitavastatin as a possible alternative treatment strategy to improve patient outcomes in chemo-resistant, relapsed ALL.

3.
Pharmacotherapy ; 42(1): 53-57, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34767652

RESUMEN

INTRODUCTION: Filgrastim is a human granulocyte colony-stimulating factor (G-CSF). There are limited data on dosing filgrastim in obesity. The objective of this study was to compare filgrastim pharmacokinetic parameters for morbidly obese and non-obese patients after a single subcutaneous dose of filgrastim dosed per actual body weight. METHODS: This prospective, matched-pair study (NCT01719432) included patients ≥18 years of age, receiving filgrastim at 5 µg/kg with a weight >190% of their ideal body weight (IBW) for "morbidly obese" patients or within 80%-124% of IBW for matched-control patients. The control group was prospectively matched for age (within 10 years), degree of neutropenia, and gender. Filgrastim doses were not rounded to vial size, to allow more accurate assessment of exposure. Blood samples were collected at 0 (prior to dose), 2, 4, 6, 8, 12, and 24 h after the first subcutaneous administration of filgrastim. RESULTS: A total of 30 patients were enrolled in this prospective pharmacokinetic study, with 15 patients assigned to each arm. Non-compartmental analysis showed that the systemic clearance (Cl) was 0.111 ± 0.041 ml/min in the morbidly obese group versus 0.124 ± 0.045 ml/min in the non-obese group (p = 0.44). Additionally, the mean area under the curve (AUC0-24h ) was 49.3 ± 13.9 ng/ml × min in the morbidly obese group versus 46.3 ± 16.8 ng/mL x min in the non-obese group (p = 0.6). No differences were seen in maximum concentrations (Cmax ) between the two groups (morbidly obese: 48.1 ± 14.7 ng/ml vs. non-obese: 49.2 ± 20.7 ng/ml (p = 0.87)). The morbidly obese group had a numerically higher, but not statistically significant, increase in time to maximum concentration (Tmax ) compared to the non-obese group (544 ± 145 min vs 436 ± 156 min (p = 0.06), respectively). CONCLUSION: Calculating subcutaneous filgrastim doses using actual body weight appears to produce similar systemic exposure in morbidly obese and non-obese patients with severe neutropenia.


Asunto(s)
Filgrastim , Factor Estimulante de Colonias de Granulocitos , Obesidad Mórbida , Adulto , Estudios de Casos y Controles , Femenino , Filgrastim/farmacocinética , Factor Estimulante de Colonias de Granulocitos/farmacocinética , Humanos , Masculino , Neutropenia/epidemiología , Obesidad Mórbida/tratamiento farmacológico , Estudios Prospectivos
4.
Free Radic Biol Med ; 175: 226-235, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34496224

RESUMEN

B-cell acute lymphoblastic leukemia (ALL) affects both pediatric and adult patients. Chemotherapy resistant tumor cells that contribute to minimal residual disease (MRD) underlie relapse and poor clinical outcomes in a sub-set of patients. Targeting mitochondrial oxidative phosphorylation (OXPHOS) in the treatment of refractory leukemic cells is a potential novel approach to sensitizing tumor cells to existing standard of care therapeutic agents. In the current study, we have expanded our previous investigation of the mitoNEET ligand NL-1 in the treatment of ALL to interrogate the functional role of the mitochondrial outer membrane protein mitoNEET in B-cell ALL. Knockout (KO) of mitoNEET (gene: CISD1) in REH leukemic cells led to changes in mitochondrial ultra-structure and function. REH cells have significantly reduced OXPHOS capacity in the KO cells coincident with reduction in electron flow and increased reactive oxygen species. In addition, we found a decrease in lipid content in KO cells, as compared to the vector control cells was observed. Lastly, the KO of mitoNEET was associated with decreased proliferation as compared to control cells when exposed to the standard of care agent cytarabine (Ara-C). Taken together, these observations suggest that mitoNEET is essential for optimal function of mitochondria in B-cell ALL and may represent a novel anti-leukemic drug target for treatment of minimal residual disease.


Asunto(s)
Proteínas Mitocondriales , Leucemia-Linfoma Linfoblástico de Células Precursoras , Linfocitos B/metabolismo , Niño , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
5.
Sci Rep ; 11(1): 15840, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349149

RESUMEN

B-cell acute lymphoblastic leukemia (ALL) is characterized by accumulation of immature hematopoietic cells in the bone marrow, a well-established sanctuary site for leukemic cell survival during treatment. While standard of care treatment results in remission in most patients, a small population of patients will relapse, due to the presence of minimal residual disease (MRD) consisting of dormant, chemotherapy-resistant tumor cells. To interrogate this clinically relevant population of treatment refractory cells, we developed an in vitro cell model in which human ALL cells are grown in co-culture with human derived bone marrow stromal cells or osteoblasts. Within this co-culture, tumor cells are found in suspension, lightly attached to the top of the adherent cells, or buried under the adherent cells in a population that is phase dim (PD) by light microscopy. PD cells are dormant and chemotherapy-resistant, consistent with the population of cells that underlies MRD. In the current study, we characterized the transcriptional signature of PD cells by RNA-Seq, and these data were compared to a published expression data set derived from human MRD B-cell ALL patients. Our comparative analyses revealed that the PD cell population is markedly similar to the MRD expression patterns from the primary cells isolated from patients. We further identified genes and key signaling pathways that are common between the PD tumor cells from co-culture and patient derived MRD cells as potential therapeutic targets for future studies.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/genética , Células Madre Mesenquimatosas/patología , Neoplasia Residual/patología , Osteoblastos/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Transcriptoma , Técnicas de Cocultivo , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Neoplasia Residual/tratamiento farmacológico , Neoplasia Residual/genética , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , RNA-Seq
6.
Pharm Res ; 37(3): 43, 2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-31989336

RESUMEN

PURPOSE: Pyrvinium pamoate (PP) is an anthelmintic drug that has been found to have anti-cancer activity in several cancer types. In the present study, we evaluated PP for potential anti-leukemic activity in B cell acute lymphoblastic leukemia (ALL) cell lines, in an effort to evaluate the repurposing potential of this drug in leukemia. METHODS: ALL cells were treated with PP at various concentrations to determine its effect on cell proliferation. Metabolic function was tested by evaluating Extracellular Acidification Rate (ECAR) and Oxygen Consumption Rate (OCR). Lastly, 3D spheroids were grown, and PP was reformulated into nanoparticles to evaluate distribution effectiveness. RESULTS: PP was found to inhibit ALL proliferation, with varied selectivity to different ALL cell subtypes. We also found that PP's cell death activity was specific for leukemic cells, as primary normal immune cells were resistant to PP-mediated cell death. Metabolic studies indicated that PP, in part, inhibits mitochondrial oxidative phosphorylation. To increase the targeting of PP to a hypoxic bone tumor microenvironment (BTME) niche, we successfully encapsulated PP in a nanoparticle drug delivery system and demonstrated that it retained its anti-leukemic activity in a hemosphere assay. CONCLUSION: We have demonstrated that PP is a novel therapeutic lead compound that counteracts the respiratory reprogramming found in refractory ALL cells and can be effectively formulated into a nanoparticle delivery system to target the BTME.


Asunto(s)
Antineoplásicos/farmacología , Huesos/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Compuestos de Pirvinio/farmacología , Microambiente Tumoral/efectos de los fármacos , Muerte Celular , Línea Celular Tumoral , Proliferación Celular , Composición de Medicamentos/métodos , Liberación de Fármacos , Humanos , Nanocápsulas/química , Fosforilación , Transducción de Señal
7.
J Pharmacol Exp Ther ; 370(1): 25-34, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31010844

RESUMEN

Disease relapse in B-cell acute lymphoblastic leukemia (ALL), either due to development of acquired resistance after therapy or because of de novo resistance, remains a therapeutic challenge. In the present study, we have developed a cytarabine (Ara-C)-resistant REH cell line (REH/Ara-C) as a chemoresistance model. REH/Ara-C 1) was not crossresistant to vincristine or methotrexate; 2) showed a similar proliferation rate and cell surface marker expression as parental REH; 3) demonstrated decreased chemotaxis toward bone marrow stromal cells; and 4) expressed higher transcript levels of cytidine deaminase (CDA) and mitoNEET (CISD1) than the parental REH cell line. Based on these findings, we tested NL-1, a mitoNEET inhibitor, which induced a concentration-dependent decrease in cell viability with a comparable IC50 value in REH and REH/Ara-C. Furthermore, NL-1 decreased cell viability in six different ALL cell lines and showed inhibitory activity in a hemosphere assay. NL-1 also impaired the migratory ability of leukemic cells, irrespective of the chemoattractant used, in a chemotaxis assay. More importantly, NL-1 showed specific activity in inducing death in a drug-resistant population of leukemic cells within a coculture model that mimicked the acquired resistance and de novo resistance observed in the bone marrow of relapsed patients. Subsequent studies indicated that NL-1 mediates autophagy, and inhibition of autophagy partially decreased NL-1-induced tumor cell death. Finally, NL-1 showed antileukemic activity in an in vivo mouse ALL model. Taken together, our study demonstrates that mitoNEET has potential as a novel antileukemic drug target in treatment refractory or relapsed ALL.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Quimiotaxis/efectos de los fármacos , Citarabina/farmacología , Descubrimiento de Drogas , Humanos , Ligandos , Proteínas Mitocondriales/antagonistas & inhibidores , Recurrencia
8.
Leuk Res ; 72: 59-66, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30103201

RESUMEN

Bone marrow microenvironment mediated downregulation of BCL6 is critical for maintaining cell quiescence and modulating therapeutic response in B-cell acute lymphoblastic leukemia (ALL). In the present study, we have performed a high throughput cell death assay using BCL6 knockdown REH ALL cell line to screen a library of FDA-approved oncology drugs. In the process, we have identified a microtubule inhibitor, cabazitaxel (CAB), and a RNA synthesis inhibitor, plicamycin (PLI) as potential anti-leukemic agents. CAB and PLI inhibited cell proliferation in not only the BCL6 knockdown REH cell line, but also six other ALL cell lines. Furthermore, combination of CAB and PLI had a synergistic effect in inhibiting proliferation in a cytarabine-resistant (REH/Ara-C) ALL cell line. Use of nanoparticles for delivery of CAB and PLI demonstrated that the combination was very effective when tested in a co-culture model that mimics the in vivo bone marrow microenvironment that typically supports ALL cell survival and migration into protective niches. Furthermore, exposure to PLI inhibited SOX2 transcription and exposure to CAB inhibited not only Mcl-1 expression but also chemotaxis in ALL cells. Taken together, our study demonstrates the utility of concomitantly targeting different critical regulatory pathways to induce cell death in drug resistant ALL cells.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Sistemas de Liberación de Medicamentos/métodos , Resistencia a Antineoplásicos/efectos de los fármacos , Nanopartículas/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Plicamicina/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Taxoides/farmacología
9.
Bioorg Med Chem Lett ; 28(10): 1937-1942, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29650292

RESUMEN

Over the past decade, the therapeutic strategies employed to treat B-precursor acute lymphoblastic leukemia (ALL) have been progressively successful in treating the disease. Unfortunately, the treatment associated dyslipidemia, either acute or chronic, is very prevalent and a cause for decreased quality of life in the surviving patients. To overcome this hurdle, we tested a series of cylopropanecarboxamides, a family demonstrated to target lipid metabolism, for their anti-leukemic activity in ALL. Several of the compounds tested showed anti-proliferative activity, with one, compound 22, inhibiting both Philadelphia chromosome negative REH and Philadelphia chromosome positive SupB15 ALL cell division. The novel advantage of these compounds is the potential synergy with standard chemotherapeutic agents, while concomitantly blunting the emergence of dyslipidemia. Thus, the cylopropanecarboxamides represent a novel class of compounds that can be potentially used in combination with the present standard-of-care to limit treatment associated dyslipidemia in ALL patients.


Asunto(s)
Antineoplásicos/química , Lipoproteína Lipasa/metabolismo , Amidas/química , Amidas/metabolismo , Amidas/farmacología , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Técnicas de Cocultivo , Dislipidemias/complicaciones , Dislipidemias/metabolismo , Dislipidemias/patología , Humanos , Lipoproteína Lipasa/antagonistas & inhibidores , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Simulación del Acoplamiento Molecular , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicaciones , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Unión Proteica , Estructura Terciaria de Proteína , Albúmina Sérica/química , Albúmina Sérica/metabolismo
10.
Med Oncol ; 33(10): 113, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27586146

RESUMEN

Mesenchymal stem cells (MSCs) are abundant throughout the body and regulate signaling within tumor microenvironments. Wnt signaling is an extrinsically regulated pathway that has been shown to regulate tumorigenesis in many types of cancer. After evaluating a panel of Wnt activating and inhibiting molecules, we show that primary human MSCs increase the expression of Dkk-1, an inhibitor of Wnt signaling, into the extracellular environment following chemotherapy exposure in a p53-dependent manner. Dkk-1 has been shown to promote tumor growth in several models of malignancy, suggesting that MSC-derived Dkk-1 could counteract the intent of cytotoxic chemotherapy, and that pharmacologic inhibition of Dkk-1 in patients receiving chemotherapy treatment for certain malignancies may be warranted.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células Cultivadas , Etopósido/farmacología , Técnicas de Silenciamiento del Gen , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Melfalán/farmacología , Proteína p53 Supresora de Tumor/genética
11.
Mol Cancer Res ; 14(10): 909-919, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27358112

RESUMEN

Acute lymphoblastic leukemia (ALL) has many features in common with normal B-cell progenitors, including their ability to respond to diverse signals from the bone marrow microenvironment (BMM) resulting in regulation of cell-cycle progression and survival. Bone marrow-derived cues influence many elements of both steady state hematopoiesis and hematopoietic tumor cell phenotypes through modulation of gene expression. miRNAs are one regulatory class of small noncoding RNAs that have been shown to be increasingly important in diverse settings of malignancy. In the current study, miRNA profiles were globally altered in ALL cells following exposure to primary human bone marrow niche cells, including bone marrow stromal cells (BMSC) and primary human osteoblasts (HOB). Specifically, mature miR-221 and miR-222 transcripts were decreased in ALL cells cocultured with BMSC or HOB, coincident with increased p27 (CDKN1B), a previously validated target. Increased p27 protein in ALL cells exposed to BMSC or HOB is consistent with accumulation of tumor cells in the G0 phase of the cell cycle and resistance to chemotherapy-induced death. Overexpression of miR-221 in ALL cells during BMSC or HOB coculture prompted cell-cycle progression and sensitization of ALL cells to cytotoxic agents, blunting the protective influence of the BMM. These novel observations indicate that BMM regulation of miR-221/222 contributes to marrow niche-supported tumor cell quiescence and survival of residual cells. IMPLICATIONS: Niche-influenced miR-221/222 may define a novel therapeutic target in ALL to be combined with existing cytotoxic agents to more effectively eradicate refractory disease that contributes to relapse. Mol Cancer Res; 14(10); 909-19. ©2016 AACR.


Asunto(s)
Células de la Médula Ósea/citología , Regulación hacia Abajo , MicroARNs/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adulto , Células de la Médula Ósea/metabolismo , Proliferación Celular , Técnicas de Cocultivo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Osteoblastos/citología , Osteoblastos/metabolismo , Nicho de Células Madre
12.
Oncotarget ; 7(17): 23439-53, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27015556

RESUMEN

The bone marrow niche has a significant impact on acute lymphoblastic leukemia (ALL) cell phenotype. Of clinical relevance is the frequency with which quiescent leukemic cells, in this niche, survive treatment and contribute to relapse. This study suggests that marrow microenvironment regulation of BCL6 in ALL is one factor that may be involved in the transition between proliferative and quiescent states of ALL cells. Utilizing ALL cell lines, and primary patient tumor cells we observed that tumor cell BCL6 protein abundance is decreased in the presence of primary human bone marrow stromal cells (BMSC) and osteoblasts (HOB). Chemical inhibition, or shRNA knockdown, of BCL6 in ALL cells resulted in diminished ALL proliferation. As many chemotherapy regimens require tumor cell proliferation for optimal efficacy, we investigated the consequences of constitutive BCL6 expression in leukemic cells during co-culture with BMSC or HOB. Forced chronic expression of BCL6 during co-culture with BMSC or HOB sensitized the tumor to chemotherapy induced cell death. Combination treatment of caffeine, which increases BCL6 expression in ALL cells, with chemotherapy extended the event free survival of mice. These data suggest that BCL6 is one factor, modulated by microenvironment derived cues that may contribute to regulation of ALL therapeutic response.


Asunto(s)
Antineoplásicos/farmacología , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Células Madre Mesenquimatosas/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Adulto , Animales , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Técnicas de Cocultivo , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Células Tumorales Cultivadas , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Stem Cells Int ; 2016: 8270464, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26880992

RESUMEN

Mesenchymal stem cells (MSCs) are of interest for use in diverse cellular therapies. Ex vivo expansion of MSCs intended for transplantation must result in generation of cells that maintain fidelity of critical functions. Previous investigations have identified genetic and phenotypic alterations of MSCs with in vitro passage, but little is known regarding how culturing influences the ability of MSCs to repair double strand DNA breaks (DSBs), the most severe of DNA lesions. To investigate the response to DSB stress with passage in vitro, primary human MSCs were exposed to etoposide (VP16) at various passages with subsequent evaluation of cellular damage responses and DNA repair. Passage number did not affect susceptibility to VP16 or the incidence and repair kinetics of DSBs. Nonhomologous end joining (NHEJ) transcripts showed little alteration with VP16 exposure or passage; however, homologous recombination (HR) transcripts were reduced following VP16 exposure with this decrease amplified as MSCs were passaged in vitro. Functional evaluations of NHEJ and HR showed that MSCs were unable to activate NHEJ repair following VP16 stress in cells after successive passage. These results indicate that ex vivo expansion of MSCs alters their ability to perform DSB repair, a necessary function for cells intended for transplantation.

14.
J Vis Exp ; (108): e53645, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26891147

RESUMEN

It is well established that the bone marrow microenvironment provides a unique site of sanctuary for hematopoietic diseases that both initiate and progress in this site. The model presented in the current report utilizes human primary bone marrow stromal cells and osteoblasts as two representative cell types from the marrow niche that influence tumor cell phenotype. The in vitro co-culture conditions described for human leukemic cells with these primary niche components support the generation of a chemoresistant subpopulation of tumor cells that can be efficiently recovered from culture for analysis by diverse techniques. A strict feeding schedule to prevent nutrient fluxes followed by gel type 10 cross-linked dextran (G10) particles recovery of the population of tumor cells that have migrated beneath the adherent bone marrow stromal cells (BMSC) or osteoblasts (OB) generating a "phase dim" (PD) population of tumor cells, provides a consistent source of purified therapy resistant leukemic cells. This clinically relevant population of tumor cells can be evaluated by standard methods to investigate apoptotic, metabolic, and cell cycle regulatory pathways as well as providing a more rigorous target in which to test novel therapeutic strategies prior to pre-clinical investigations targeted at minimal residual disease.


Asunto(s)
Antineoplásicos/farmacología , Células de la Médula Ósea/patología , Leucemia/tratamiento farmacológico , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Técnicas de Cocultivo , Humanos , Leucemia/patología , Fenotipo
15.
Exp Hematol ; 44(1): 50-9.e1-2, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26407636

RESUMEN

Acute lymphoblastic leukemia (ALL) treatment regimens have dramatically improved the survival of ALL patients. However, chemoresistant minimal residual disease that persists following cessation of therapy contributes to aggressive relapse. The bone marrow microenvironment (BMM) is an established "site of sanctuary" for ALL, as well as myeloid-lineage hematopoietic disease, with signals in this unique anatomic location contributing to drug resistance. Several models have been developed to recapitulate the interactions between the BMM and ALL cells. However, many in vitro models fail to accurately reflect the level of protection afforded to the most resistant subset of leukemic cells during coculture with BMM elements. Preclinical in vivo models have advantages, but can be costly, and are often not fully informed by optimal in vitro studies. We describe an innovative extension of 2-D coculture wherein ALL cells uniquely interact with bone marrow-derived stromal cells. Tumor cells in this model bury beneath primary human bone marrow-derived stromal cells or osteoblasts, termed "phase dim" ALL, and exhibit a unique phenotype characterized by altered metabolism, distinct protein expression profiles, increased quiescence, and pronounced chemotherapy resistance. Investigation focused on the phase dim subpopulation may more efficiently inform preclinical design and investigation of the minimal residual disease and relapse that arise from BMM-supported leukemic tumor cells.


Asunto(s)
Médula Ósea/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Microambiente Tumoral , Técnicas de Cocultivo , Humanos , Fenotipo
16.
PLoS One ; 10(10): e0140506, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26488876

RESUMEN

Acute lymphoblastic leukemia (ALL) initiates and progresses in the bone marrow, and as such, the marrow microenvironment is a critical regulatory component in development of this cancer. However, ALL studies were conducted mainly on flat plastic substrates, which do not recapitulate the characteristics of marrow microenvironments. To study ALL in a model of in vivo relevance, we have engineered a 3-D microfluidic cell culture platform. Biologically relevant populations of primary human bone marrow stromal cells, osteoblasts and human leukemic cells representative of an aggressive phenotype were encapsulated in 3-D collagen matrix as the minimal constituents and cultured in a microfluidic platform. The matrix stiffness and fluidic shear stress were controlled in a physiological range. The 3-D microfluidic as well as 3-D static models demonstrated coordinated cell-cell interactions between these cell types compared to the compaction of the 2-D static model. Tumor cell viability in response to an antimetabolite chemotherapeutic agent, cytarabine in tumor cells alone and tri-culture models for 2-D static, 3-D static and 3-D microfluidic models were compared. The present study showed decreased chemotherapeutic drug sensitivity of leukemic cells in 3-D tri-culture models from the 2-D models. The results indicate that the bone marrow microenvironment plays a protective role in tumor cell survival during drug treatment. The engineered 3-D microfluidic tri-culture model enables systematic investigation of effects of cell-cell and cell-matrix interactions on cancer progression and therapeutic intervention in a controllable manner, thus improving our limited comprehension of the role of microenvironmental signals in cancer biology.


Asunto(s)
Médula Ósea/patología , Técnicas de Cultivo de Célula/métodos , Células Madre Mesenquimatosas/citología , Microfluídica/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Células de la Médula Ósea/citología , Comunicación Celular/fisiología , Línea Celular Tumoral , Supervivencia Celular , Técnicas de Cocultivo/métodos , Humanos , Microfluídica/instrumentación , Osteoblastos/citología , Microambiente Tumoral
17.
J Clin Exp Pathol ; 5(1)2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26457231

RESUMEN

Extranodal Marginal Zone Lymphoma (ENMZL) of Mucosa-Associated Lymphoid Tissue (MALT) is a problematic and sometimes controversial diagnosis. While commonly seen in the stomach in the setting of chronic Helicobacter pylori infection, other extranodal sites, such as the lung, may also present with disease. ENMZL is clinically and morphologically heterogeneous; however, regardless of presentation, the etiology lies in the accumulation of lymphoid tissue in non-traditional sites. This phenomenon is typically secondary to an underlying inflammatory stimulus such as chronic infection or autoimmune states. The current case report details the clinical history of a patient with Sjögren syndrome over a four year period who eventually developed ENMZL. The patient initially presented with an atypical, but polyclonal, lymphoproliferative process diagnosed as lymphocytic interstitial pneumonia. Over time, the patient showed evolution to a monoclonal process with associated radiologic progression of disease. This evolution manifested as a dense lymphoid infiltrate with prominent plasmacytic differentiation and the development of a lung mass radiologically. This case contributes to the growing body of knowledge that suggests ENMZL lies along a biological spectrum of lymphoproliferative disorders whereby a benign, reactive process may eventually undergo malignant transformation. This evolution likely represents the acquisition of genetic abnormalities that allow autonomous proliferation in the absence of the initial immune stimulus. In practice, determining when this event occurs and, thus, distinguishing between reactive and neoplastic disorders within this spectrum may be difficult as no single clinicopathologic feature may be present to establish the diagnosis. This case further illustrates the importance of correlating the clinical, radiologic and pathologic data to evaluate patients with atypical pulmonary lymphoproliferative disorders and to allow the optimal management of their disease.

18.
Oncotarget ; 6(24): 20697-710, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26079538

RESUMEN

AF1q is an MLL fusion partner that was identified from acute myeloid leukemia (AML) patients with t (1; 11) (q21; q23) chromosomal abnormality. The function of AF1q is not yet fully known, however, elevated AF1q expression is associated with poor clinical outcomes in various malignancies. Here, we show that AF1q specifically binds to T-cell-factor-7 (TCF7) in the Wnt signaling pathway and results in transcriptional activation of CD44 as well as multiple downstream targets of the TCF7/LEF1. In addition, enhanced AF1q expression promotes breast cancer cell proliferation, migration, mammosphere formation, and chemo-resistance. In xenograft models, enforced AF1q expression in breast cancer cells also promotes liver metastasis and lung colonization. In a cohort of 63 breast cancer patients, higher percentages of AF1q-positive cancer cells in primary sites were associated with significantly poorer overall survival (OS), disease-free survival (DFS), and brain metastasis-free survival (b-MFS). Using paired primary/metastatic samples from the same patients, we demonstrate that AF1q-positive breast cancer cells become dynamically dominant in the metastatic sites compared to the primary sites. Our findings indicate that breast cancer cells with a hyperactive AF1q/TCF7/CD44 regulatory axis in the primary sites may represent "metastatic founder cells" which have invasive properties.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptores de Hialuranos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factor 1 de Transcripción de Linfocitos T/metabolismo , Secuencia de Aminoácidos , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Femenino , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Datos de Secuencia Molecular , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Factor 1 de Transcripción de Linfocitos T/genética , Transfección , Vía de Señalización Wnt
19.
Stem Cells Transl Med ; 3(7): 836-48, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24855276

RESUMEN

Despite initial response to therapy, most acute myeloid leukemia (AML) patients relapse. To eliminate relapse-causing leukemic stem/progenitor cells (LPCs), patient-specific immune therapies may be required. In vitro cellular engineering may require increasing the "stemness" or immunogenicity of tumor cells and activating or restoring cancer-impaired immune-effector and antigen-presenting cells. Leukapheresis samples provide the cells needed to engineer therapies: LPCs to be targeted, normal hematopoietic stem cells to be spared, and cancer-impaired immune cells to be repaired and activated. This study sought to advance development of LPC-targeted therapies by exploring nongenetic ways to slow the decay and to increase the immunogenicity of primary CD34(+) AML cells. CD34(+) AML cells generally displayed more colony-forming and aldehyde dehydrogenase activity than CD34(-) AML cells. Along with exposure to bone marrow stromal cells and low (1%-5%) oxygen, culture with RepSox (a reprogramming tool and inhibitor of transforming growth factor-ß receptor 1) consistently slowed decline of CD34(+) AML and myelodysplastic syndrome (MDS) cells. RepSox-treated AML cells displayed higher CD34, CXCL12, and MYC mRNA levels than dimethyl sulfoxide-treated controls. RepSox also accelerated loss of T cell immunoglobulin mucin-3 (Tim-3), an immune checkpoint receptor that impairs antitumor immunity, from the surface of AML and MDS cells. Our results suggest RepSox may reduce Tim-3 expression by inhibiting transforming growth factor-ß signaling and slow decay of CD34(+) AML cells by increasing CXCL12 and MYC, two factors that inhibit AML cell differentiation. By prolonging survival of CD34(+) AML cells and reducing Tim-3, RepSox may promote in vitro immune cell activation and advance development of LPC-targeted therapies.


Asunto(s)
Antígenos CD34/metabolismo , Biomarcadores de Tumor/metabolismo , Reprogramación Celular/efectos de los fármacos , Leucemia Mieloide Aguda/terapia , Proteínas de la Membrana/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Pirazoles/farmacología , Piridinas/farmacología , Linfocitos T/efectos de los fármacos , Aldehído Deshidrogenasa/metabolismo , Antígenos CD34/genética , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Técnicas de Cocultivo , Relación Dosis-Respuesta a Droga , Células Nutrientes , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Leucaféresis , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Proteínas de la Membrana/genética , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Oxígeno/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/patología , Factores de Tiempo , Células Tumorales Cultivadas , Escape del Tumor
20.
Clin Exp Metastasis ; 31(2): 257-67, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24306183

RESUMEN

Various malignancies invade the CNS sanctuary site, accounting for the vast majority of CNS neoplastic foci and contributing to significant morbidity as well as mortality. The blood-brain barrier (BBB) exhibits considerable impermeability to chemotherapeutic agents, severely limiting therapeutic options available for patients developing metastatic CNS involvement, accounting for poor outcomes. The mechanisms by which malignant cells breach the highly exclusive BBB and subsequently survive in this unique anatomical site remain poorly understood, with most of the current knowledge stemming from nonmalignant and solid malignancy models. While solid and hematologic malignancies may face different challenges once within the CNS (e.g., solid tumor parenchymal metastasis compared to masses/nodules/leptomeningeal disease in hematologic malignancies), commonality exists in the process of migrating across the BBB from the circulation. Specifically considering this last point, this review aims to survey the current mechanistic knowledge regarding malignant migration across the BBB, necessarily emphasizing the better studied solid tumor and nonmalignant models with the intention of highlighting both the current knowledge gap and additional work required to effectively consider how hematopoietic malignancies breach the CNS.


Asunto(s)
Neoplasias del Sistema Nervioso Central/patología , Neoplasias Hematológicas/patología , Modelos Biológicos , Barrera Hematoencefálica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...