Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Biol ; 510: 50-65, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521499

RESUMEN

Bilaterian animals have evolved complex sensory organs comprised of distinct cell types that function coordinately to sense the environment. Each sensory unit has a defined architecture built from component cell types, including sensory cells, non-sensory support cells, and dedicated sensory neurons. Whether this characteristic cellular composition is present in the sensory organs of non-bilaterian animals is unknown. Here, we interrogate the cell type composition and gene regulatory networks controlling development of the larval apical sensory organ in the sea anemone Nematostella vectensis. Using single cell RNA sequencing and imaging approaches, we reveal two unique cell types in the Nematostella apical sensory organ, GABAergic sensory cells and a putative non-sensory support cell population. Further, we identify the paired-like (PRD) homeodomain gene prd146 as a specific sensory cell marker and show that Prd146+ sensory cells become post-mitotic after gastrulation. Genetic loss of function approaches show that Prd146 is essential for apical sensory organ development. Using a candidate gene knockdown approach, we place prd146 downstream of FGF signaling in the apical sensory organ gene regulatory network. Further, we demonstrate that an aboral FGF activity gradient coordinately regulates the specification of both sensory and support cells. Collectively, these experiments define the genetic basis for apical sensory organ development in a non-bilaterian animal and reveal an unanticipated degree of complexity in a prototypic sensory structure.


Asunto(s)
Anémonas de Mar , Animales , Anémonas de Mar/genética , Sistema Nervioso , Gastrulación/genética , Genes Homeobox
2.
Nat Commun ; 14(1): 8270, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092765

RESUMEN

There is currently little information about the evolution of gene clusters, genome architectures and karyotypes in early branching animals. Slowly evolving anthozoan cnidarians can be particularly informative about the evolution of these genome features. Here we report chromosome-level genome assemblies of two related anthozoans, the sea anemones Nematostella vectensis and Scolanthus callimorphus. We find a robust set of 15 chromosomes with a clear one-to-one correspondence between the two species. Both genomes show chromosomal conservation, allowing us to reconstruct ancestral cnidarian and metazoan chromosomal blocks, consisting of at least 19 and 16 ancestral linkage groups, respectively. We show that, in contrast to Bilateria, the Hox and NK clusters of investigated cnidarians are largely disintegrated, despite the presence of staggered hox/gbx expression in Nematostella. This loss of microsynteny conservation may be facilitated by shorter distances between cis-regulatory sequences and their cognate transcriptional start sites. We find no clear evidence for topologically associated domains, suggesting fundamental differences in long-range gene regulation compared to vertebrates. These data suggest that large sets of ancestral metazoan genes have been retained in ancestral linkage groups of some extant lineages; yet, higher order gene regulation with associated 3D architecture may have evolved only after the cnidarian-bilaterian split.


Asunto(s)
Anémonas de Mar , Animales , Anémonas de Mar/genética , Filogenia , Sintenía/genética , Regulación de la Expresión Génica , Genoma/genética
3.
Curr Biol ; 33(13): 2678-2689.e5, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37315559

RESUMEN

During early animal evolution, the emergence of axially polarized segments was central to the diversification of complex bilaterian body plans. Nevertheless, precisely how and when segment polarity pathways arose remains obscure. Here, we demonstrate the molecular basis for segment polarization in developing larvae of the sea anemone Nematostella vectensis. Utilizing spatial transcriptomics, we first constructed a 3D gene expression atlas of developing larval segments. Capitalizing on accurate in silico predictions, we identified Lbx and Uncx, conserved homeodomain-containing genes that occupy opposing subsegmental domains under the control of both bone morphogenetic protein (BMP) signaling and the Hox-Gbx cascade. Functionally, Lbx mutagenesis eliminated all molecular evidence of segment polarization at the larval stage and caused an aberrant mirror-symmetric pattern of retractor muscles (RMs) in primary polyps. These results demonstrate the molecular basis for segment polarity in a non-bilaterian animal, suggesting that polarized metameric structures were present in the Cnidaria-Bilateria common ancestor over 600 million years ago.


Asunto(s)
Anémonas de Mar , Animales , Anémonas de Mar/genética , Transcriptoma , Genes Homeobox , Transducción de Señal , Filogenia
4.
bioRxiv ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36711919

RESUMEN

During early animal evolution, the emergence of axially-polarized segments was central to the diversification of complex bilaterian body plans. Nevertheless, precisely how and when segment polarity pathways arose remains obscure. Here we demonstrate the molecular basis for segment polarization in developing larvae of the pre-bilaterian sea anemone Nematostella vectensis . Utilizing spatial transcriptomics, we first constructed a 3-D gene expression atlas of developing larval segments. Capitalizing on accurate in silico predictions, we identified Lbx and Uncx, conserved homeodomain-containing genes that occupy opposing subsegmental domains under the control of both BMP signaling and the Hox-Gbx cascade. Functionally, Lbx mutagenesis eliminated all molecular evidence of segment polarization at larval stage and caused an aberrant mirror-symmetric pattern of retractor muscles in primary polyps. These results demonstrate the molecular basis for segment polarity in a pre-bilaterian animal, suggesting that polarized metameric structures were present in the Cnidaria-Bilateria common ancestor over 600 million years ago. Highlights: Nematostella endomesodermal tissue forms metameric segments and displays a transcriptomic profile similar to that observed in bilaterian mesoderm Construction of a comprehensive 3-D gene expression atlas enables systematic dissection of segmental identity in endomesoderm Lbx and Uncx , two conserved homeobox-containing genes, establish segment polarity in Nematostella The Cnidarian-Bilaterian common ancestor likely possessed the genetic toolkit to generate polarized metameric structures.

5.
Nat Commun ; 13(1): 3494, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715400

RESUMEN

The stinging organelles of jellyfish, sea anemones, and other cnidarians, known as nematocysts, are remarkable cellular weapons used for both predation and defense. Nematocysts consist of a pressurized capsule containing a coiled harpoon-like thread. These structures are in turn built within specialized cells known as nematocytes. When triggered, the capsule explosively discharges, ejecting the coiled thread which punctures the target and rapidly elongates by turning inside out in a process called eversion. Due to the structural complexity of the thread and the extreme speed of discharge, the precise mechanics of nematocyst firing have remained elusive7. Here, using a combination of live and super-resolution imaging, 3D electron microscopy, and genetic perturbations, we define the step-by-step sequence of nematocyst operation in the model sea anemone Nematostella vectensis. This analysis reveals the complex biomechanical transformations underpinning the operating mechanism of nematocysts, one of nature's most exquisite biological micro-machines. Further, this study will provide insight into the form and function of related cnidarian organelles and serve as a template for the design of bioinspired microdevices.


Asunto(s)
Escifozoos , Anémonas de Mar , Animales , Microscopía Electrónica , Nematocisto/química , Orgánulos , Anémonas de Mar/genética
6.
Dev Biol ; 488: 91-103, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35609633

RESUMEN

The Drosophila BMP 2/4 homologue Decapentaplegic (Dpp) acts as a morphogen to regulate diverse developmental processes, including wing morphogenesis. Transcriptional feedback regulation of this pathway ensures tightly controlled signaling outputs to generate the precise pattern of the adult wing. Nevertheless, few direct Dpp target genes have been explored and our understanding of feedback regulation remains incomplete. Here we employ transcriptional profiling following dpp conditional knockout to identify nord, a novel Dpp/BMP feedback regulator. nord mutants generated by CRISPR/Cas9 mutagenesis produce a smaller wing and display low penetrance venation defects. At the molecular level, nord encodes a secreted heparin-binding protein, and we show that its overexpression is sufficient to antagonize Dpp/BMP signaling. Mechanistically, we demonstrate that Nord physically interacts with the Dpp/BMP co-receptor Dally and promotes its degradation. In sum, we propose that Nord fine-tunes Dpp/BMP signaling by regulating Dally availability on the cell surface, with implications for both developmental and disease models.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retroalimentación , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal/fisiología , Alas de Animales/metabolismo
7.
Methods Mol Biol ; 2450: 437-465, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359322

RESUMEN

With a surprisingly complex genome and an ever-expanding genetic toolkit, the sea anemone Nematostella vectensis has become a powerful model system for the study of both development and whole-body regeneration. Here we provide the most current protocols for short-hairpin RNA (shRNA )-mediated gene knockdown and CRISPR/Cas9-targeted mutagenesis in this system. We further show that a simple Klenow reaction followed by in vitro transcription allows for the production of gene-specific shRNAs and single guide RNAs (sgRNAs) in a fast, affordable, and readily scalable manner. Together, shRNA knockdown and CRISPR/Cas9-targeted mutagenesis allow for rapid screens of gene function as well as the production of stable mutant lines that enable functional genetic analysis throughout the Nematostella life cycle.


Asunto(s)
Anémonas de Mar , Animales , Técnicas de Silenciamiento del Gen , Genoma , Mutagénesis , ARN Interferente Pequeño/genética , Anémonas de Mar/genética
8.
Dev Biol ; 482: 17-27, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34822845

RESUMEN

Spermatogenesis is a dynamic process of cellular differentiation that generates the mature spermatozoa required for reproduction. Errors that arise during this process can lead to sterility due to low sperm counts and malformed or immotile sperm. While it is estimated that 1 out of 7 human couples encounter infertility, the underlying cause of male infertility can only be identified in 50% of cases. Here, we describe and examine the genetic requirements for missing minor mitochondria (mmm), sterile affecting ciliogenesis (sac), and testes of unusual size (tous), three previously uncharacterized genes in Drosophila that are predicted to be components of the flagellar axoneme. Using Drosophila, we demonstrate that these genes are essential for male fertility and that loss of mmm, sac, or tous results in complete immotility of the sperm flagellum. Cytological examination uncovered additional roles for sac and tous during cytokinesis and transmission electron microscopy of developing spermatids in mmm, sac, and tous mutant animals revealed defects associated with mitochondria and the accessory microtubules required for the proper elongation of the mitochondria and flagella during ciliogenesis. This study highlights the complex interactions of cilia-related proteins within the cell body and advances our understanding of male infertility by uncovering novel mitochondrial defects during spermatogenesis.


Asunto(s)
Cilios/genética , Drosophila melanogaster/genética , Infertilidad Masculina/genética , Dinámicas Mitocondriales/genética , Motilidad Espermática/genética , Animales , Cilios/metabolismo , Dineínas/genética , Dineínas/metabolismo , Infertilidad Masculina/fisiopatología , Masculino , Microtúbulos/genética , Microtúbulos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Espermátides/patología , Espermatogénesis/genética , Testículo/fisiología
9.
J Exp Biol ; 224(Pt 5)2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33547184

RESUMEN

Parental effects can prepare offspring for different environments and facilitate survival across generations. We exposed parental populations of the estuarine anemone, Nematostella vectensis, from Massachusetts to elevated temperatures and quantified larval mortality across a temperature gradient. We found that parental exposure to elevated temperatures resulted in a consistent increase in larval thermal tolerance, as measured by the temperature at which 50% of larvae die (LT50), with a mean increase in LT50 of 0.3°C. Larvae from subsequent spawns returned to baseline thermal thresholds when parents were returned to normal temperatures, indicating plasticity in these parental effects. Histological analyses of gametogenesis in females suggested that these dynamic shifts in larval thermal tolerance may be facilitated by maternal effects in non-overlapping gametic cohorts. We also compared larvae from North Carolina (a genetically distinct population with higher baseline thermal tolerance) and Massachusetts parents, and observed that larvae from heat-exposed Massachusetts parents had thermal thresholds comparable to those of larvae from unexposed North Carolina parents. North Carolina parents also increased larval thermal tolerance under the same high-temperature regime, suggesting that plasticity in parental effects is an inherent trait for N. vectensis Overall, we find that larval thermal tolerance in N. vectensis shows a strong genetic basis and can be modulated by parental effects. Further understanding of the mechanisms behind these shifts can elucidate the fate of thermally sensitive ectotherms in a rapidly changing thermal environment.


Asunto(s)
Anemone , Animales , Femenino , Calor , Larva , Massachusetts , North Carolina
10.
Elife ; 92020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32969790

RESUMEN

Two distinct mechanisms for primordial germ cell (PGC) specification are observed within Bilatera: early determination by maternal factors or late induction by zygotic cues. Here we investigate the molecular basis for PGC specification in Nematostella, a representative pre-bilaterian animal where PGCs arise as paired endomesodermal cell clusters during early development. We first present evidence that the putative PGCs delaminate from the endomesoderm upon feeding, migrate into the gonad primordia, and mature into germ cells. We then show that the PGC clusters arise at the interface between hedgehog1 and patched domains in the developing mesenteries and use gene knockdown, knockout and inhibitor experiments to demonstrate that Hh signaling is required for both PGC specification and general endomesodermal patterning. These results provide evidence that the Nematostella germline is specified by inductive signals rather than maternal factors, and support the existence of zygotically-induced PGCs in the eumetazoan common ancestor.


Asunto(s)
Tipificación del Cuerpo/genética , Estratos Germinativos , Proteínas Hedgehog , Anémonas de Mar , Transducción de Señal/genética , Animales , Femenino , Técnicas de Silenciamiento del Gen , Células Germinativas/citología , Células Germinativas/metabolismo , Estratos Germinativos/citología , Estratos Germinativos/crecimiento & desarrollo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Estadios del Ciclo de Vida/genética , Masculino , Anémonas de Mar/citología , Anémonas de Mar/genética , Anémonas de Mar/crecimiento & desarrollo
11.
Nat Commun ; 11(1): 4399, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32879319

RESUMEN

In cnidarians, axial patterning is not restricted to embryogenesis but continues throughout a prolonged life history filled with unpredictable environmental changes. How this developmental capacity copes with fluctuations of food availability and whether it recapitulates embryonic mechanisms remain poorly understood. Here we utilize the tentacles of the sea anemone Nematostella vectensis as an experimental paradigm for developmental patterning across distinct life history stages. By analyzing over 1000 growing polyps, we find that tentacle progression is stereotyped and occurs in a feeding-dependent manner. Using a combination of genetic, cellular and molecular approaches, we demonstrate that the crosstalk between Target of Rapamycin (TOR) and Fibroblast growth factor receptor b (Fgfrb) signaling in ring muscles defines tentacle primordia in fed polyps. Interestingly, Fgfrb-dependent polarized growth is observed in polyp but not embryonic tentacle primordia. These findings show an unexpected plasticity of tentacle development, and link post-embryonic body patterning with food availability.


Asunto(s)
Tipificación del Cuerpo , Anémonas de Mar , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Desarrollo Embrionario/efectos de los fármacos , Conducta Alimentaria , Regulación del Desarrollo de la Expresión Génica , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Anémonas de Mar/embriología , Anémonas de Mar/genética , Anémonas de Mar/crecimiento & desarrollo , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
12.
Dev Biol ; 463(2): 158-168, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32387369

RESUMEN

In cilia and flagella, dyneins form complexes which give rise to the inner and outer axonemal arms. Defects in the dynein arms are the leading cause of primary ciliary dyskinesia (PCD), which is characterized by chronic respiratory infections, situs inversus, and sterility. While the pathological features associated with PCD are increasingly well characterized, many of the causative genetic lesions remain elusive. Using Drosophila, here we analyze genetic requirements for wampa (wam), a previously uncharacterized component of the outer dynein arm. While homozygous mutant animals are viable and display no morphological defects, loss of wam results in complete male sterility. Ultrastructural analysis further reveals that wam mutant spermatids lack the axonemal outer dynein arms, which leads to a complete loss of flagellar motility. In addition to a role in outer dynein arm formation, we also uncover other novel microtubule-associated requirements for wam during spermatogenesis, including the regulation of mitochondrial localization and the shaping of the nuclear head. Due to the conserved nature of dyneins, this study advances our understanding of the pathology of PCD and the functional role of dyneins in axoneme formation and other aspects of spermatogenesis.


Asunto(s)
Axonema/metabolismo , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Fertilidad/fisiología , Cola del Espermatozoide/metabolismo , Espermatogénesis/fisiología , Animales , Axonema/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Dineínas/genética , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Masculino , Cabeza del Espermatozoide/fisiología , Motilidad Espermática/fisiología
13.
Dev Cell ; 51(1): 49-61.e4, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31495693

RESUMEN

As epithelial tissues develop, groups of cells related by descent tend to associate in clonal populations rather than dispersing within the cell layer. While this is frequently assumed to be a result of differential adhesion, precise mechanisms controlling clonal cohesiveness remain unknown. Here we employ computational simulations to modulate epithelial cell size in silico and show that junctions between small cells frequently collapse, resulting in clone-cell dispersal among larger neighbors. Consistent with similar dynamics in vivo, we further demonstrate that mosaic disruption of Drosophila Tor generates small cells and results in aberrant clone dispersal in developing wing disc epithelia. We propose a geometric basis for this phenomenon, supported in part by the observation that soap-foam cells exhibit similar size-dependent junctional rearrangements. Combined, these results establish a link between cell-size pleomorphism and the control of epithelial cell packing, with potential implications for understanding tumor cell dispersal in human disease.


Asunto(s)
Tamaño de la Célula , Drosophila melanogaster/embriología , Epitelio/embriología , Animales , Apoptosis , Adhesión Celular , División Celular , Proliferación Celular , Simulación por Computador , Proteínas de Drosophila/metabolismo , Células Epiteliales/citología , Femenino , Células Espumosas/citología , Masculino , Morfogénesis , Proteínas Tirosina Quinasas Receptoras/metabolismo , Alas de Animales/embriología
14.
J Cell Biol ; 218(6): 1824-1838, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31088859

RESUMEN

Proper orientation of the mitotic spindle is essential for cell fate determination, tissue morphogenesis, and homeostasis. During epithelial proliferation, planar spindle alignment ensures the maintenance of polarized tissue architecture, and aberrant spindle orientation can disrupt epithelial integrity. Nevertheless, in vivo mechanisms that restrict the mitotic spindle to the plane of the epithelium remain poorly understood. Here we show that the junction-localized tumor suppressors Scribbled (Scrib) and Discs large (Dlg) control planar spindle orientation via Mud and 14-3-3 proteins in the Drosophila wing disc epithelium. During mitosis, Scrib is required for the junctional localization of Dlg, and both affect mitotic spindle movements. Using coimmunoprecipitation and mass spectrometry, we identify 14-3-3 proteins as Dlg-interacting partners and further report that loss of 14-3-3s causes both abnormal spindle orientation and disruption of epithelial architecture as a consequence of basal cell delamination and apoptosis. Combined, these biochemical and genetic analyses indicate that 14-3-3s function together with Scrib, Dlg, and Mud during planar cell division.


Asunto(s)
Proteínas 14-3-3/metabolismo , Polaridad Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Huso Acromático/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Alas de Animales/citología , Proteínas 14-3-3/genética , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Morfogénesis , Huso Acromático/genética , Proteínas Supresoras de Tumor/genética , Alas de Animales/metabolismo
16.
Dev Biol ; 448(1): 7-15, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30641041

RESUMEN

A mechanistic understanding of evolutionary developmental biology requires the development of novel techniques for the manipulation of gene function in phylogenetically diverse organismal systems. Recently, gene-specific knockdown by microinjection of short hairpin RNA (shRNA) was applied in the sea anemone Nematostella vectensis, demonstrating that the shRNA approach can be used for efficient and robust sequence-specific knockdown of a gene of interest. However, the time- and labor-intensive process of microinjection limits access to this technique and its application in large scale experiments. To address this issue, here we present an electroporation protocol for shRNA delivery into Nematostella eggs. This method leverages the speed and simplicity of electroporation, enabling users to manipulate gene expression in hundreds of eggs or embryos within minutes. We provide a detailed description of the experimental procedure, including reagents, electroporation conditions, preparation of Nematostella eggs, and follow-up care of experimental animals. Finally, we demonstrate the knockdown of several endogenous and exogenous genes with known phenotypes and discuss the potential applications of this method.


Asunto(s)
Electroporación/métodos , Embrión no Mamífero/embriología , Técnicas de Silenciamiento del Gen/métodos , Oocitos/metabolismo , ARN Interferente Pequeño/biosíntesis , Anemone , Animales , Embrión no Mamífero/citología , Oocitos/citología , ARN Interferente Pequeño/genética
17.
Science ; 361(6409): 1377-1380, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30262503

RESUMEN

Hox genes encode conserved developmental transcription factors that govern anterior-posterior (A-P) pattering in diverse bilaterian animals, which display bilateral symmetry. Although Hox genes are also present within Cnidaria, these simple animals lack a definitive A-P axis, leaving it unclear how and when a functionally integrated Hox code arose during evolution. We used short hairpin RNA (shRNA)-mediated knockdown and CRISPR-Cas9 mutagenesis to demonstrate that a Hox-Gbx network controls radial segmentation of the larval endoderm during development of the sea anemone Nematostella vectensis. Loss of Hox-Gbx activity also elicits marked defects in tentacle patterning along the directive (orthogonal) axis of primary polyps. On the basis of our results, we propose that an axial Hox code may have controlled body patterning and tissue segmentation before the evolution of the bilaterian A-P axis.


Asunto(s)
Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox/fisiología , Anémonas de Mar/crecimiento & desarrollo , Factores de Transcripción/fisiología , Animales , Proteínas Bacterianas , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Endodermo/citología , Endodermo/crecimiento & desarrollo , Endonucleasas , Técnicas de Silenciamiento del Gen/métodos , Genes Homeobox/genética , Larva/citología , Larva/genética , Larva/crecimiento & desarrollo , Mutagénesis , ARN Interferente Pequeño/genética , Anémonas de Mar/citología , Anémonas de Mar/genética , Factores de Transcripción/genética
18.
Elife ; 72018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29745898

RESUMEN

The majority of mutations studied in animal models are designated as recessive based on the absence of visible phenotypes in germline heterozygotes. Accordingly, genetic studies primarily rely on homozygous loss-of-function to determine gene requirements, and a conceptually-related 'two-hit model' remains the central paradigm in cancer genetics. Here we investigate pathogenesis due to somatic mutation in epithelial tissues, a process that predominantly generates heterozygous cell clones. To study somatic mutation in Drosophila, we generated inducible alleles that mimic human Juvenile polyposis-associated BMPR1A mutations. Unexpectedly, four of these mutations had no phenotype in heterozygous carriers but exhibited clear tissue-level effects when present in somatic clones of heterozygous cells. We conclude that these alleles are indeed recessive when present in the germline, but nevertheless deleterious when present in heterozygous clones. This unforeseen effect, deleterious heteromosaicism, suggests a 'one-hit' mechanism for disease initiation that may explain some instances of pathogenesis associated with spontaneous mutation.


Asunto(s)
Alelos , Proteínas de Drosophila/genética , Drosophila/fisiología , Heterocigoto , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Drosophila/genética , Proteínas de Drosophila/fisiología , Humanos , Proteínas Mutantes/genética , Mutación , Proteínas Serina-Treonina Quinasas/fisiología , Receptores de Superficie Celular/fisiología
20.
BMC Biol ; 15(1): 55, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28662661

RESUMEN

Model organisms are widely used in research as accessible and convenient systems to study a particular area or question in biology. Traditionally only a handful of organisms have been widely studied, but modern research tools are enabling researchers to extend the set of model organisms to include less-studied and more unusual systems. This Forum highlights a range of 'non-model model organisms' as emerging systems for tackling questions across the whole spectrum of biology (and beyond), the opportunities and challenges, and the outlook for the future.


Asunto(s)
Biología , Eucariontes , Modelos Animales , Animales , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...