Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(1): e23592, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38187258

RESUMEN

Microgravity, in space travel and prolonged bed rest conditions, induces cardiovascular deconditioning along with skeletal muscle mass loss and weakness. The findings of microgravity research may also aid in the understanding and treatment of human health conditions on Earth such as muscle atrophy, and cardiovascular diseases. Due to the paucity of biomarkers and the unknown underlying mechanisms of cardiovascular and skeletal muscle deconditioning in these environments, there are insufficient diagnostic and preventative measures. In this study, we employed hindlimb unloading (HU) mouse model, which mimics astronauts in space and bedridden patients, to first evaluate cardiovascular and skeletal muscle function, followed by proteomics and metabolomics LC-MS/MS-based analysis using serum samples. Three weeks of unloading caused changes in the function of the cardiovascular system in c57/Bl6 mice, as seen by a decrease in mean arterial pressure and heart weight. Unloading for three weeks also changed skeletal muscle function, causing a loss in grip strength in HU mice and atrophy of skeletal muscle indicated by a reduction in muscle mass. These modifications were partially reversed by a two-week recovery period of reloading condition, emphasizing the significance of the recovery process. Proteomics analysis revealed 12 dysregulated proteins among the groups, such as phospholipid transfer protein, Carbonic anhydrase 3, Parvalbumin alpha, Major urinary protein 20 (Mup20), Thrombospondin-1, and Apolipoprotein C-IV. On the other hand, metabolomics analysis showed altered metabolites among the groups such as inosine, hypoxanthine, xanthosine, sphinganine, l-valine, 3,4-Dihydroxyphenylglycol, and l-Glutamic acid. The joint data analysis revealed that HU conditions mainly impacted pathways such as ABC transporters, complement and coagulation cascades, nitrogen metabolism, and purine metabolism. Overall, our results indicate that microgravity environment induces significant alterations in the function, proteins, and metabolites of these mice. These observations suggest the potential utilization of these proteins and metabolites as novel biomarkers for assessing and mitigating cardiovascular and skeletal muscle deconditioning associated with such conditions.

2.
Microorganisms ; 11(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38137975

RESUMEN

Candida albicans is a common pathogenic fungus that presents a challenge to healthcare facilities. It can switch between a yeast cell form that diffuses through the bloodstream to colonize internal organs and a filamentous form that penetrates host mucosa. Understanding the pathogen's strategies for environmental adaptation and, ultimately, survival, is crucial. As a complementary study, herein, a multi-omics analysis was performed using high-resolution timsTOF MS to compare the proteomes and metabolomes of Wild Type (WT) Candida albicans (strain DK318) grown on agar plates versus liquid media. Proteomic analysis revealed a total of 1793 proteins and 15,013 peptides. Out of the 1403 identified proteins, 313 proteins were significantly differentially abundant with a p-value < 0.05. Of these, 156 and 157 proteins were significantly increased in liquid and solid media, respectively. Metabolomics analysis identified 192 metabolites in total. The majority (42/48) of the significantly altered metabolites (p-value 0.05 FDR, FC 1.5), mainly amino acids, were significantly higher in solid media, while only 2 metabolites were significantly higher in liquid media. The combined multi-omics analysis provides insight into adaptative morphological changes supporting Candida albicans' life cycle and identifies crucial virulence factors during biofilm formation and bloodstream infection.

3.
Microorganisms ; 11(4)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37110494

RESUMEN

Water monitor lizards (WMLs) reside in unhygienic and challenging ecological surroundings and are routinely exposed to various pathogenic microorganisms. It is possible that their gut microbiota produces substances to counter microbial infections. Here we determine whether selected gut bacteria of water monitor lizards (WMLs) possess anti-amoebic properties using Acanthamoeba castellanii of the T4 genotype. Conditioned media (CM) were prepared from bacteria isolated from WML. The CM were tested using amoebicidal, adhesion, encystation, excystation, cell cytotoxicity and amoeba-mediated host cell cytotoxicity assays in vitro. Amoebicidal assays revealed that CM exhibited anti-amoebic effects. CM inhibited both excystation and encystation in A. castellanii. CM inhibited amoebae binding to and cytotoxicity of host cells. In contrast, CM alone showed limited toxic effects against human cells in vitro. Mass spectrometry revealed several antimicrobials, anticancer, neurotransmitters, anti-depressant and other metabolites with biological functions. Overall, these findings imply that bacteria from unusual places, such as WML gut, produce molecules with anti-acanthamoebic capabilities.

4.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674867

RESUMEN

Untargeted multi-omics analysis of plasma is an emerging tool for the identification of novel biomarkers for evaluating disease prognosis, and for developing a better understanding of molecular mechanisms underlying human disease. The successful application of metabolomic and proteomic approaches relies on reproducibly quantifying a wide range of metabolites and proteins. Herein, we report the results of untargeted metabolomic and proteomic analyses from blood plasma samples following analyte extraction by two frequently-used solvent systems: chloroform/methanol and methanol-only. Whole blood samples were collected from participants (n = 6) at University Hospital Sharjah (UHS) hospital, then plasma was separated and extracted by two methods: (i) methanol precipitation and (ii) 4:3 methanol:chloroform extraction. The coverage and reproducibility of the two methods were assessed by ultra-high-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS). The study revealed that metabolite extraction by methanol-only showed greater reproducibility for both metabolomic and proteomic quantifications than did methanol/chloroform, while yielding similar peptide coverage. However, coverage of extracted metabolites was higher with the methanol/chloroform precipitation.


Asunto(s)
Metanol , Espectrometría de Masas en Tándem , Humanos , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Metanol/química , Cloroformo , Reproducibilidad de los Resultados , Proteómica
5.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675128

RESUMEN

Skin cancer, including malignant melanoma (MM) and keratinocyte carcinoma (KC), historically named non-melanoma skin cancers (NMSC), represents the most common type of cancer among the white skin population. Despite decades of clinical research, the incidence rate of melanoma is increasing globally. Therefore, a better understanding of disease pathogenesis and resistance mechanisms is considered vital to accomplish early diagnosis and satisfactory control. The "Omics" field has recently gained attention, as it can help in identifying and exploring metabolites and metabolic pathways that assist cancer cells in proliferation, which can be further utilized to improve the diagnosis and treatment of skin cancer. Although skin tissues contain diverse metabolic enzymes, it remains challenging to fully characterize these metabolites. Metabolomics is a powerful omics technique that allows us to measure and compare a vast array of metabolites in a biological sample. This technology enables us to study the dermal metabolic effects and get a clear explanation of the pathogenesis of skin diseases. The purpose of this literature review is to illustrate how metabolomics technology can be used to evaluate the metabolic profile of human skin cancer, using a variety of analytical platforms including gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR). Data collection has not been based on any analytical method.


Asunto(s)
Metaboloma , Neoplasias Cutáneas , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos , Neoplasias Cutáneas/diagnóstico
6.
Ann Med ; 55(2): 2305308, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38253025

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a primary malignancy of the central nervous system and is classified as a grade IV astrocytoma by the World Health Organization (WHO). Although GBM rarely metastasizes, its prognosis remains poor. Moreover, the standard treatment for GBM, temozolomide (TMZ), is associated with chemoresistance, which is a major factor behind GBM-related deaths. Investigating drugs with repurposing potential in the context of GBM is worthwhile to bypass lengthy bench-to-bedside research. The field of omics has garnered significant interest in scientific research because of its potential to delineate the intricate regulatory network underlying tumor development. In particular, proteomic and metabolomic analyses are powerful approaches for the investigation of metabolic enzymes and intermediate metabolites since they represent the functional end of the cancer phenotype. METHODS: We chose two of the most widely prescribed anticancer drugs, cisplatin and paclitaxel. To our knowledge, the current literature lacks studies examining their effects on metabolic and proteomic alterations in GBM. We employed the mass spectrometry technological platform 'UHPLC-Q-TOF-MS/MS' to examine the changes in the proteome and metabolome profiles of the U87 cell line with defined concentrations of cisplatin and/or paclitaxel via an untargeted approach. RESULTS: A total of 1,419 distinct proteins and 90 metabolites were generated, and subsequent analysis was performed. We observed that upon treatment with cisplatin (9.5 µM), U87 cells exhibited apparent efforts to cope with this exogenous stressor, understanding the effect of paclitaxel (5.3 µM) on altering the transport machinery of the cell, and how the combination of cisplatin and/or paclitaxel suggests potential interactions with promising benefits in GBM therapeutics. CONCLUSION: Our research provides a detailed map of alterations in response to cisplatin and paclitaxel treatment, provides crucial insights into the molecular basis of their action, and paves the way for further research to identify molecular targets for this elusive malignancy.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Cisplatino/farmacología , Proteómica , Espectrometría de Masas en Tándem , Paclitaxel/farmacología
7.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36233276

RESUMEN

Hepatocellular carcinoma (HCC) is the second prominent cause of cancer-associated death worldwide. Usually, HCC is diagnosed in advanced stages, wherein sorafenib, a multiple target tyrosine kinase inhibitor, is used as the first line of treatment. Unfortunately, resistance to sorafenib is usually encountered within six months of treatment. Therefore, there is a critical need to identify the underlying reasons for drug resistance. In the present study, we investigated the proteomic and metabolomics alterations accompanying sorafenib resistance in hepatocellular carcinoma Hep3B cells by employing ultra-high-performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS). The Bruker Human Metabolome Database (HMDB) library was used to identify the differentially abundant metabolites through MetaboScape 4.0 software (Bruker). For protein annotation and identification, the Uniprot proteome for Homo sapiens (Human) database was utilized through MaxQuant. The results revealed that 27 metabolites and 18 proteins were significantly dysregulated due to sorafenib resistance in Hep3B cells compared to the parental phenotype. D-alanine, L-proline, o-tyrosine, succinic acid and phosphatidylcholine (PC, 16:0/16:0) were among the significantly altered metabolites. Ubiquitin carboxyl-terminal hydrolase isozyme L1, mitochondrial superoxide dismutase, UDP-glucose-6-dehydrogenase, sorbitol dehydrogenase and calpain small subunit 1 were among the significantly altered proteins. The findings revealed that resistant Hep3B cells demonstrated significant alterations in amino acid and nucleotide metabolic pathways, energy production pathways and other pathways related to cancer aggressiveness, such as migration, proliferation and drug-resistance. Joint pathway enrichment analysis unveiled unique pathways, including the antifolate resistance pathway and other important pathways that maintain cancer cells' survival, growth, and proliferation. Collectively, the results identified potential biomarkers for sorafenib-resistant HCC and gave insights into their role in chemotherapeutic drug resistance, cancer initiation, progression and aggressiveness, which may contribute to better prognosis and chemotherapeutic outcomes.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Antagonistas del Ácido Fólico , Neoplasias Hepáticas , Alanina/farmacología , Aminoácidos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores/metabolismo , Calpaína/metabolismo , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos , Antagonistas del Ácido Fólico/farmacología , Glucosa/farmacología , Humanos , L-Iditol 2-Deshidrogenasa/metabolismo , Neoplasias Hepáticas/metabolismo , Redes y Vías Metabólicas , Nucleótidos/metabolismo , Fosfatidilcolinas/farmacología , Prolina/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteoma/metabolismo , Proteómica , Sorafenib/farmacología , Sorafenib/uso terapéutico , Ácido Succínico/farmacología , Superóxido Dismutasa/metabolismo , Tirosina/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Uridina Difosfato/metabolismo
8.
Cancer Chemother Pharmacol ; 90(6): 467-488, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36264351

RESUMEN

PURPOSE: HER2-enriched breast cancer with high levels of hormone receptor expression, known as "triple positive" breast cancer, may represent a new entity with a relatively favourable prognosis against which the combination of chemotherapy, HER-2 inhibition, and endocrine treatment may be considered overtreatment. We explored the effect of the anticancer drugs tamoxifen and trastuzumab, both separately and in combination, on the integrated proteomic and metabolic profile of "triple positive" breast cancer cells (BT-474). METHOD: We employed ultra-high-performance liquid chromatography-quadrupole time of flight mass spectrometry using a Bruker timsTOF to investigate changes in BT-474 cell line treated with either tamoxifen, trastuzumab or a combination. Differentially abundant metabolites were identified using the Bruker Human Metabolome Database metabolite library and proteins using the Uniprot proteome for Homo sapiens using MetaboScape and MaxQuant, respectively, for identification and quantitation. RESULTS: A total of 77 proteins and 85 metabolites were found to significantly differ in abundance in BT-474 treated cells with tamoxifen 5 µM/and or trastuzumab 2.5 µM. Findings suggest that by targeting important cellular signalling pathways which regulate cell growth, apoptosis, proliferation, and chemoresistance, these medicines have a considerable anti-growth effect in BT-474 cells. Pathways enriched for dysregulation include RNA splicing, neutrophil degranulation and activation, cellular redox homeostasis, mitochondrial transmembrane transport, ferroptosis and necroptosis, ABC transporters and central carbon metabolism. CONCLUSION: Our findings in protein and metabolite level research revealed that anti-cancer drug therapy had a significant impact on the key signalling pathways and molecular processes in triple positive BT-474 cell lines.


Asunto(s)
Neoplasias de la Mama , Tamoxifeno , Humanos , Femenino , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proteómica , Receptor ErbB-2/metabolismo , Espectrometría de Masas , Línea Celular Tumoral
9.
J Proteomics ; 265: 104660, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35728772

RESUMEN

The 2020 global cancer registry has ranked breast cancer (BCa) as the most commonly diagnosed type of cancer and the most common cause of cancer-related deaths in women worldwide. Increasing resistance and significant side effects continue to limit the efficacy of anti-BCa drugs, hence the need to identify new drug targets and to develop novel compounds to overcome these limitations. Nature-inspired anti-cancer compounds are becoming increasingly popular since they often provide a relatively safe and effective alternative. In this study, we employed multi-omics techniques to gain insights into the relevant mechanism of action of two recently identified new nature-inspired anti-cancer compounds (SIMR3066 and SIMR3058). Discovery proteomics analysis combined with LC-MS/MS-based untargeted metabolomics analysis was performed on compound-treated vs DMSO-treated (control) MCF-7 cells. Downstream protein functional enrichment analysis showed that most of the responsive proteins were functionally associated with antigen processing and neutrophil degranulation, RNA catabolism and protein folding as well as cytoplasmic vesicle lumen and mitochondrial matrix formation. Consistent with the proteomics findings, metabolomic pathway analysis suggested that the differentially abundant compounds indicated altered metabolic pathways such as glycolysis, the Krebs cycle and oxidative phosphorylation. Furthermore, metabolomics-based enriched-for-action pathway analysis showed that the two compounds associate with mercaptopurine, thioguanine and azathioprine related pathways. Lastly, integrated proteomics and metabolomics analysis revealed that treatment of BCa with SIMR3066 disrupts several signaling pathways including p53-mediated apoptosis and the circadian entertainment pathway. Overall, the multi-omics approach we used in this study indicated that it is a powerful tool in probing the mechanism of action of lead drug candidates. SIGNIFICANCE: In this study we adopted a multi-omics (proteomics and metabolomics) strategy to learn more about the molecular mechanisms of action of nature-inspired potential anticancer drugs. Following treatment with SIMR3066 or SIMR3058, the integration of these multi-omics data sets revealed which biological pathways are altered in BCa cells. This study demonstrates that combining proteomics with metabolomics is a powerful method to investigate the mechanism of action of potential anticancer lead drug candidates.


Asunto(s)
Neoplasias de la Mama , Espectrometría de Masas en Tándem , Cromatografía Liquida , Femenino , Humanos , Metabolómica/métodos , Proteómica/métodos
10.
Front Med (Lausanne) ; 9: 850374, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35586072

RESUMEN

The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death worldwide, with antibiotic resistance increasing exponentially due to a lack of new treatments. In addition to this, many pathogens share the common trait of having the ability to modulate, and escape from, the host immune response. The challenge in medical microbiology is to develop and apply new experimental approaches that allow for the identification of both the microbe and its drug susceptibility profile in a time-sensitive manner, as well as to elucidate their molecular mechanisms of survival and immunomodulation. Over the last three decades, proteomics has contributed to a better understanding of the underlying molecular mechanisms responsible for microbial drug resistance and pathogenicity. Proteomics has gained new momentum as a result of recent advances in mass spectrometry. Indeed, mass spectrometry-based biomedical research has been made possible thanks to technological advances in instrumentation capability and the continuous improvement of sample processing and workflows. For example, high-throughput applications such as SWATH or Trapped ion mobility enable the identification of thousands of proteins in a matter of minutes. This type of rapid, in-depth analysis, combined with other advanced, supportive applications such as data processing and artificial intelligence, presents a unique opportunity to translate knowledge-based findings into measurable impacts like new antimicrobial biomarkers and drug targets. In relation to the Research Topic "Proteomic Approaches to Unravel Mechanisms of Resistance and Immune Evasion of Bacterial Pathogens," this review specifically seeks to highlight the synergies between the powerful fields of modern proteomics and microbiology, as well as bridging translational opportunities from biomedical research to clinical practice.

11.
Cancer Genomics Proteomics ; 19(1): 79-93, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34949661

RESUMEN

BACKGROUND/AIM: Trastuzumab and tamoxifen are two of the most widely prescribed anti-cancer drugs for breast cancer (BC). To date, few studies have explored the impact of anticancer drugs on metabolic pathways in BC. Metabolomics is an emerging technology that can identify new biomarkers for tracking therapy response and novel therapeutic targets. MATERIALS AND METHODS: We employed ultra-high-performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS) to investigate changes in MCF-7 and SkBr3 cell lines treated with either tamoxifen, trastuzumab or a combination of both. The Bruker Human Metabolome Database (HMDB) metabolite library was used to match spectra and the MetaboScape software to assign each feature with a putative metabolite name or molecular formula for metabolite annotation. RESULTS: A total of 98 metabolites were found to significantly differ in abundance in MCF-7 and SkBr3 treated cells. Moreover, the metabolic profile of the combination medication is similar to that of tamoxifen alone, according to functional enrichment analysis. CONCLUSION: Tamoxifen/trastuzumab treatment had a significant effect on pathways essential for the control of energy-production, which have previously been linked to cancer progression, and aggressiveness.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Biomarcadores de Tumor/análisis , Neoplasias de la Mama/tratamiento farmacológico , Tamoxifeno/farmacología , Trastuzumab/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Cromatografía Líquida de Alta Presión/métodos , Monitoreo de Drogas/métodos , Metabolismo Energético/efectos de los fármacos , Humanos , Células MCF-7 , Metaboloma/efectos de los fármacos , Metabolómica/métodos , Tamoxifeno/uso terapéutico , Espectrometría de Masas en Tándem/métodos , Trastuzumab/uso terapéutico
12.
Front Nutr ; 9: 1008730, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36698470

RESUMEN

Introduction: During the holy month of Ramadan, adult healthy Muslims are mandated to abstain from dawn to sunset, with free eating at night hours that may extend up to 12 h. The current work was designed to investigate the metabolomics changes incurred upon the observance of Ramadan diurnal intermittent fasting (RDIF). Methods: Twenty-five metabolically healthy participants with overweight and obesity (7 females and 18 males, with a mean age of 39.48 ± 10.0 years) were recruited for the study and were followed before and at the end of RDIF month. Dietary, anthropometric, biochemical, and physical activity assessments were performed before and at the end of the fasting month. The metabolomic assay was performed using liquid chromatography-mass spectrometry for the two-time points. Results and discussion: Metabolomics assay revealed a significant reduction in a few metabolites. The analysis revealed that 27 metabolites differed significantly (P < 0.05) between pre-and post-RDIF. Among the differentially abundant metabolites, 23 showed a decrease with fasting, these included several amino acids such as aspartame, tryptophan, phenylalanine, histidine, and other metabolites including valeric acid, and cortisol. On the other hand, only four metabolites showed increased levels after RDIF including traumatic acid, 2-pyrrolidinone, PC[18:1(9Z)/18:1(9Z)], and L-sorbose. The MetaboAnalyst® platform reported that the top enriched metabolic pathways included: (1) histidine metabolism; (2) folate biosynthesis (3) phenylalanine, tyrosine, and tryptophan biosynthesis; (4) aminoacyltRNA biosynthesis; (5) caffeine metabolism; (6) vitamin B6 metabolism; and several other pathways relating to lipid metabolisms such as arachidonic acid metabolism, glycerophospholipid metabolism, and linoleic acid metabolism. In conclusion, RDIF entails significant changes in various metabolic pathways that reflect different dietary and lifestyle behaviors practiced during the fasting month.

13.
Front Med (Lausanne) ; 8: 723667, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34676224

RESUMEN

Despite the availability of effective drug treatment, Mycobacterium tuberculosis (Mtb), the causative agent of TB disease, kills ~1. 5 million people annually, and the rising prevalence of drug resistance increasingly threatens to worsen this plight. We previously showed that sublethal exposure to the frontline anti-TB drug, rifampicin, resulted in substantial adaptive remodeling of the proteome of the model organism, Mycobacterium smegmatis, in the drug-sensitive mc2155 strain [wild type (WT)]. In this study, we investigate whether these responses are conserved in an engineered, isogenic mutant harboring the clinically relevant S531L rifampicin resistance-conferring mutation (SL) and distinguish the responses that are specific to RNA polymerase ß subunit- (RpoB-) binding activity of rifampicin from those that are dependent on the presence of rifampicin alone. We verified the drug resistance status of this strain and observed no phenotypic indications of rifampicin-induced stress upon treatment with the same concentration as used in WT (2.5 µg/ml). Thereafter, we used a cell wall-enrichment strategy to focus attention on the cell wall proteome and observed 253 proteins to be dysregulated in SL bacteria in comparison with 716 proteins in WT. We observed that decreased abundance of ATP-binding cassette (ABC) transporters and increased abundance of ribosomal machinery were conserved in the SL strain, whereas the upregulation of transcriptional machinery and the downregulation of numerous two-component systems were not. We conclude that the drug-resistant M. smegmatis strain displays some of the same proteomic responses observed in WT and suggest that this evidence supports the hypothesis that rifampicin exercises effects beyond RpoB-interaction alone and that mycobacteria recognise rifampicin as a signaling molecule in an RpoB-independent manner at sublethal doses. Taken together, our data indicates mixed RpoB-independent and RpoB-dependent proteomic remodeling in WT mycobacteria, with evidence for RpoB-independent ABC transporter downregulation, but drug activity-based transcriptional upregulation and two-component system downregulation.

14.
J Proteomics ; 191: 166-179, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29466714

RESUMEN

Understanding the cell wall of mycobacteria is crucial for improving drug design or identifying new antigens suitable to vaccination. Yet this remains problematic due to the complexity of the cell wall composition. In this study, we successfully developed gel-free approaches to study cell wall proteins in Mycobacterium smegmatis. The cell wall was subjected to differential centrifugation, differential detergent solubilisation and phase separation to yield the genuine cell wall proteome. Next, protein extracts were digested by filter-assisted sample preparation for LC-MS/MS analysis on a Q Exactive mass spectrometer, and identified proteins filtered through a stringent bioinformatics pipeline. This yielded the unprecedented coverage of 96 lipoproteins, 475 membrane proteins and 73 secreted proteins. Employing this approach, we next quantified changes in the cell wall proteome during exposure of M. smegmatis to sub-lethal concentration of rifampicin. This facilitated detailed characterisation of the dysregulation of ABC transporters, virulence factors such as Mce proteins and PknG, and proteins involved in cell wall and lipid synthesis. Crucially, these cell wall proteins are under-represented in previous proteome analysis of M. smegmatis. This approach enables further quantitative proteomic studies of the role of the cell wall proteome of mycobacteria in virulence or during drug exposure. SIGNIFICANCE: We developed novel gel-free sample preparation workflows for the cell wall fraction of mycobacteria that significantly increase the coverage of the cell wall proteome compared to previous studies. We then provide a data analysis workflow that enables the removal of likely cytosolic contaminants in the cell wall fraction post-measurement. Combined, these approaches increase the coverage of the cell wall proteome while ensuring that the identified proteins are true cell wall proteins and not carry-over of high-abundance contaminants from the cytosol. We have applied these approaches to quantify the dysregulation of cell wall proteins during exposure of M. smegmatis to rifampicin, which has shed new light on the coordinated down-regulation of ABC transporters as well as virulence factors present in the cell wall proteome.


Asunto(s)
Pared Celular/química , Mycobacterium smegmatis/efectos de los fármacos , Proteoma/metabolismo , Rifampin/farmacología , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/análisis , Proteínas Bacterianas/efectos de los fármacos , Pared Celular/efectos de los fármacos , Proteoma/efectos de los fármacos , Proteómica/métodos , Factores de Virulencia/metabolismo
15.
Mol Cell Proteomics ; 17(7): 1365-1377, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29549130

RESUMEN

Mycobacterial Ser/Thr kinases play a critical role in bacterial physiology and pathogenesis. Linking kinases to the substrates they phosphorylate in vivo, thereby elucidating their exact functions, is still a challenge. The aim of this work was to associate protein phosphorylation in mycobacteria with important subsequent macro cellular events by identifying the physiological substrates of PknG in Mycobacterium bovis BCG. The study compared the phosphoproteome dynamics during the batch growth of M. bovis BCG versus the respective PknG knock-out mutant (ΔPknG-BCG) strains. We employed TiO2 phosphopeptide enrichment techniques combined with label-free quantitative phosphoproteomics workflow on LC-MS/MS. The comprehensive analysis of label-free data identified 603 phosphopeptides on 307 phosphoproteins with high confidence. Fifty-five phosphopeptides were differentially phosphorylated, of these, 23 phosphopeptides were phosphorylated in M. bovis BCG wild-type only and not in the mutant. These were further validated through targeted mass spectrometry assays (PRMs). Kinase-peptide docking studies based on a published crystal structure of PknG in complex with GarA revealed that the majority of identified phosphosites presented docking scores close to that seen in previously described PknG substrates, GarA, and ribosomal protein L13. Six out of the 22 phosphoproteins had higher docking scores than GarA, consistent with the proteins identified here being true PknG substrates. Based on protein functional analysis of the PknG substrates identified, this study confirms that PknG plays an important regulatory role in mycobacterial metabolism, through phosphorylation of ATP binding proteins and enzymes in the TCA cycle. This work also reinforces PknG's regulation of protein translation and folding machinery.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Mycobacterium bovis/metabolismo , Fosfoproteínas/metabolismo , Proteómica/métodos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Mycobacterium bovis/crecimiento & desarrollo , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Fosforilación , Reproducibilidad de los Resultados , Coloración y Etiquetado , Especificidad por Sustrato
16.
MethodsX ; 5: 475-484, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30622917

RESUMEN

The comprehensive characterisation of the cell wall proteome of mycobacteria is of considerable relevance to both the discovery of new drug targets as well as to the design of new vaccines against Mycobacterium tuberculosis. However, due to its extremely hydrophobic nature, the coverage of proteomic studies of this subcellular compartment is still far from complete. Here, we report novel gel-free cell wall sample preparation procedures and quantitative LC-MS/MS measurements on a Q Exactive mass spectrometer. We combine these with a novel post-measurement bioinformatic analysis to filter out likely cytosolic contaminants. This reveals a subset of proteins that are highly enriched for cell wall proteins. The success of this approach is verified by peptide-centric measurement of the abundance of known subcellular markers, as well as analysis of the percentage of predicted membrane proteins within the purified fraction. While M. smegmatis was used during this study to establish and optimise the sample preparation procedures, these can easily be applied to other mycobacterial species, such as M. bovis BCG or M. tuberculosis. •Improved gel-free cell wall sample preparation gives higher yields of tryptic peptides for LC-MS/MS measurement.•Higher yields of tryptic peptides provide better quantitation and coverage of cell wall proteome.•Post-measurement enrichment analysis filters out high abundance cytosolic contaminants that have carried through the experimental analysis.

17.
Sci Rep ; 7: 43858, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262820

RESUMEN

In the last 40 years only one new antitubercular drug has been approved, whilst resistance to current drugs, including rifampicin, is spreading. Here, we used the model organism Mycobacterium smegmatis to study mechanisms of phenotypic mycobacterial resistance, employing quantitative mass spectrometry-based proteomics to investigate the temporal effects of sub-lethal concentrations of rifampicin on the mycobacterial proteome at time-points corresponding to early response, onset of bacteriostasis and early recovery. Across 18 samples, a total of 3,218 proteins were identified from 31,846 distinct peptides averaging 16,250 identified peptides per sample. We found evidence that two component signal transduction systems (e.g. MprA/MprB) play a major role during initial mycobacterial adaptive responses to sub-lethal rifampicin and that, after dampening an initial SOS response, the bacteria supress the DevR (DosR) regulon and also upregulate their transcriptional and translational machineries. Furthermore, we found a co-ordinated dysregulation in haeme and mycobactin synthesis. Finally, gradual upregulation of the M. smegmatis-specific rifampin ADP-ribosyl transferase was observed which, together with upregulation of transcriptional and translational machinery, likely explains recovery of normal growth. Overall, our data indicates that in mycobacteria, sub-lethal rifampicin triggers a concerted phenotypic response that contrasts significantly with that observed at higher antimicrobial doses.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium smegmatis/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Rifampin/farmacología , Antibióticos Antituberculosos/farmacología , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana/genética , Mycobacterium smegmatis/genética , Péptidos/metabolismo , Fenotipo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...