Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; 15(20): e202200614, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-35879863

RESUMEN

Studies of the ammonia oxidation reaction (AOR) for the synthesis of nitrite and nitrate (NO2/3 - ) have been limited to a small number of catalytic materials, majorly Pt based. As the demand for nitrate-based products such as fertilisers continues to grow, exploration of alternative catalysts is needed. Herein, 19 metals immobilised as particles on carbon fibre electrodes were tested for their catalytic activity for the ammonia electrooxidation to NO2/3 - under alkaline conditions (0.1 m KOH). Nickel-based electrodes showed the highest overall NO2/3 - yield with a rate of 5.0±1.0 nmol s-1 cm-2 , to which nitrate contributed 62±8 %. Cu was the only catalyst that enabled formation of nitrate, at a rate of 1.0±0.4 nmol s-1 cm-2 , with undetectable amounts of nitrite produced. Previously unexplored in this context, Fe and Ag also showed promise and provided new insights into the mechanisms of the process. Ag-based electrodes showed strong indications of activity towards NH3 oxidation in electrochemical measurements but produced relatively low NO2/3 - yields, suggesting the formation of alternate oxidation products. NO2/3 - production over Fe-based electrodes required the presence of dissolved O2 and was more efficient than with Ni on longer timescales. These results highlight the complexity of the AOR mechanism and provide a broad set of catalytic activity and nitrate versus nitrite yield data, which might guide future development of a practical process for the distributed sustainable production of nitrates and nitrites at low and medium scales.


Asunto(s)
Nitratos , Nitritos , Amoníaco , Fertilizantes , Fibra de Carbono , Níquel , Oxidación-Reducción
2.
Nanoscale ; 14(4): 1395-1408, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35018401

RESUMEN

The electrochemical synthesis of ammonia at ambient temperature and pressure has the potential to replace the conventional process for the production of ammonia. However, the low ammonia yield and poor long-term stability of catalysts for the synthesis of ammonia hinders the application of this technology. Herein, we endeavored to tackle this challenge by synthesizing 3-D vertical graphene (VG) on Ni foam via a one-step, low-temperature plasma process, which offered high conductivity and large surface area. Subsequently, the vertical graphene on Ni foam was loaded with nanolayers of ruthenium oxide (RuO2, ∼2 nm) and cerium oxide (CeO2, <20 nm) nanoparticles via magnetron sputtering. The incorporation of nanoparticle layers (RuO2 and CeO2/RuO2) on VG significantly increased the NH3 yield in KOH electrolyte. Finally, the performance and long-term stability of this composite material were successfully demonstrated by the addition of CeO2/RuO2 nanolayers on the VG electrocatalyst. The catalyst achieved an excellent performance with a high ammonia synthesis yield of 50.56 µg mgtotal cat.-1 h-1 (1.11 × 10-10 mol cm-2 s-1) during the performance evaluation period of 36 h. This observation was also verified by density functional theory calculation, where CeO2 exhibited the best catalytic performance compared to RuO2 and pristine graphene.

3.
ChemSusChem ; 13(18): 4856-4865, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32696610

RESUMEN

There is a growing interest in using ammonia as a liquid carrier of hydrogen for energy applications. Currently, ammonia is produced industrially by the Haber-Bosch process, which requires high temperature and high pressure. In contrast, bacteria have naturally evolved an enzyme known as nitrogenase, that is capable of producing ammonia and hydrogen at ambient temperature and pressure. Therefore, nitrogenases are attractive as a potentially more efficient means to produce ammonia via harnessing the unique properties of this enzyme. In recent years, exciting progress has been made in bioelectrocatalysis using nitrogenases to produce ammonia. Here, the prospects for developing biological ammonia production are outlined, key advances in bioelectrocatalysis by nitrogenases are highlighted, and possible solutions to the obstacles faced in realising this goal are discussed.

4.
Sci Rep ; 10(1): 3774, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32111964

RESUMEN

Hydrogen has the potential to play an important role in decarbonising our energy systems. Crucial to achieving this is the ability to produce clean sources of hydrogen using renewable energy sources. Currently platinum is commonly used as a hydrogen evolution catalyst, however, the scarcity and expense of platinum is driving the need to develop non-platinum-based catalysts. Here we report a protein-based hydrogen evolution catalyst based on a recombinant silk protein from honeybees and a metal macrocycle, cobalt protoporphyrin (CoPPIX). We enhanced the hydrogen evolution activity three fold compared to the unmodified silk protein by varying the coordinating ligands to the metal centre. Finally, to demonstrate the use of our biological catalyst, we built a proton exchange membrane (PEM) water electrolysis cell using CoPPIX-silk as the hydrogen evolution catalyst that is able to produce hydrogen with a 98% Faradaic efficiency. This represents an exciting advance towards allowing protein-based catalysts to be used in electrolysis cells.


Asunto(s)
Abejas/química , Hidrógeno/química , Proteínas de Insectos/química , Metaloproteínas/química , Protoporfirinas/química , Seda/química , Animales , Abejas/genética , Catálisis , Proteínas de Insectos/genética , Metaloproteínas/genética , Ingeniería de Proteínas , Protoporfirinas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Seda/genética
5.
Front Chem ; 2: 79, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25309898

RESUMEN

Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...