Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 21(2): 579-89, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25359612

RESUMEN

Functionalization of the PNP pincer ligand backbone allows for a comparison of the dialkyl amido, vinyl alkyl amido, and divinyl amido ruthenium(II) pincer complex series [RuCl{N(CH2 CH2 PtBu2 )2 }], [RuCl{N(CHCHPtBu2 )(CH2 CH2 PtBu2 )}], and [RuCl{N(CHCHPtBu2 )2 }], in which the ruthenium(II) ions are in the extremely rare square-planar coordination geometry. Whereas the dialkylamido complex adopts an electronic singlet (S=0) ground state and energetically low-lying triplet (S=1) state, the vinyl alkyl amido and the divinyl amido complexes exhibit unusual triplet (S=1) ground states as confirmed by experimental and computational examination. However, essentially non-magnetic ground states arise for the two intermediate-spin complexes owing to unusually large zero-field splitting (D>+200 cm(-1) ). The change in ground state electronic configuration is attributed to tailored pincer ligand-to-metal π-donation within the PNP ligand series.


Asunto(s)
Complejos de Coordinación/química , Rutenio/química , Alquilación , Amidas/química , Butadienos/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Compuestos de Vinilo/química
2.
Inorg Chem ; 52(22): 13078-86, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24236759

RESUMEN

The reaction between Ln(III) chloride and NiCl2·4H2O salts in presence of a multidentate sterically unencumbered ligand, (E)-2,2'-(2-hydroxy-3-((2-hydroxyphenylimino)methyl)-5-methylbenzylazanediyl)diethanol (LH4) leads to the synthesis of four isostructural pentanuclear hetereometallic complexes [Ni2Dy3(LH)4]Cl (1), [Ni2Gd3(LH)4]Cl (2), [Ni2Tb3(LH)3(LH2)]Cl2 (3), [Ni2 Ho3 (LH)3 (LH2)]Cl2 (4) with unprecedented topology. Here the two compounds 1 are 2 are monocationic and crystallize in chiral space group, P2(1)2(1)2(1) whereas compounds 3 and 4 are dicationic and crystallize in achiral space group P2(1)/n. The total metal framework, {Ni2Ln3} unit is held by four triply deprotonated ligands [LH](3-) in 1 and 2 whereas in case of 3 and 4 three triply deprotonated [LH](3-) and one doubly deprotonated [LH2](2-) ligands are involved. In these complexes both the lanthanide ions and the nickel(II) ions are doubly bridged and the bridging is composed of oxygen atoms derived from either phenolate or ethoxide groups. The analysis of SQUID measurements reveal a high magnetic ground state and a slow relaxation of the magnetization with two relaxation regimes for 1. For the thermally activated regime we found an effective energy barrier of U(eff) = 85 K. Micro Hall probe loop measurements directly proof the single-molecule magnet (SMM) nature of 1 with a blocking temperature of T(B) = 3 K and an open hysteresis for sweep rates faster than 50 mT/s.

3.
Dalton Trans ; 41(12): 3553-61, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22310968

RESUMEN

Reaction of nickel(II) chloride hexahydrate with N-n-butyldiethanolamine H(2)L (3) in the presence of LiH in anhydrous THF leads to the formation of the unique octanuclear chloro-bridged nickel(II) double cubane [({Ni(II)(4)(µ(3)-OH)Cl(3)(HL)(3)}µ(2)-Cl)(2)] (4) in 57% yield. According to single crystal X-ray structure analysis, complex 4·4CH(2)Cl(2) possesses a [({Ni(4)(µ(3)-OH)(µ(3)-O)(3)(OH)(3)(N)(3)(Cl)(3)}µ(2)-Cl)(2)] core and crystallizes in the monoclinic space group P2(1)/c with a = 18.292(2), b = 19.8972(5), c = 23.295(2) Å, ß = 98.408(6)°, V = 8387.3(8) Å(3), and four molecules in the unit cell. The analysis of the SQUID magnetic susceptibility data identified 4 as a weakly coupled dimer (J(1) = 14.5 K, J(2) = -0.6 K) with a ground state of S = 0, resulting from two S = 4 states of each {Ni(4)} subunits. Although complex 4 does not show an ac out-of-phase signal in a zero dc field at temperatures of 1.8 K and higher, low-temperature magnetization measurements revealed that complex 4 is a single-molecule magnet and shows hysteretic magnetization characteristics with typical temperature and sweep-rate dependencies. The eye-catching feature of complex 4 is the presence of two different blocking temperatures (0.9 K around zero field and 1.3 K at higher fields). The origin of this highly unusual behavior can be assigned to the dimer-nature of the interaction between the two S = 4 units. Furthermore STM and current imaging tunnelling spectroscopy (CITS) were performed on aggregates of 4 drop-coated on highly oriented pyrolytic graphite (HOPG) surfaces. CITS measurements show a strong contrast in the area of the nickel centers and a HOMO-LUMO gap of approximately 0.8 V.

4.
J Am Chem Soc ; 133(10): 3433-43, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21329393

RESUMEN

First members of a new family of heterometallic Mn/Ni complexes [Mn(2)Ni(3)X(2)L(4)(LH)(2)(H(2)O)(2)] (X = Cl: 1; X = Br: 2) with the new ligand 2-{3-(2-hydroxyphenyl)-1H-pyrazol-1-yl}ethanol (H(2)L) have been synthesized, and single crystals obtained from CH(2)Cl(2) solutions have been characterized crystallographically. The molecular structures feature a quasi-linear Mn(III)-Ni(II)-Ni(II)-Ni(II)-Mn(III) core with six-coordinate metal ions, where elongated axes of all the distorted octahedral coordination polyhedra are aligned parallel and are fixed with respect to each other by intramolecular hydrogen bonds. 1 and 2 exhibit quite strong ferromagnetic exchange interactions throughout (J(Mn-Ni) ≈ 40 K (1) or 42 K (2); J(Ni-Ni) ≈ 22 K (1) or 18 K (2)) that lead to an S(tot) = 7 ground state, and a sizable uniaxial magnetoanisotropy with D(mol) values -0.55 K (1) and -0.45 K (2). These values are directly derived also from frequency- and temperature-dependent high-field EPR spectra. Slow relaxation of the magnetization at low temperatures and single-molecule magnet (SMM) behavior are evident from frequency-dependent peaks in the out-of-phase ac susceptibilities and magnetization versus dc field measurements, with significant energy barriers to spin reversal U(eff) = 27 K (1) and 22 K (2). Pronounced quantum tunnelling steps are observed in the hysteresis loops of the temperature- and scan rate-dependent magnetization data, but with the first relaxation step shifted above (1) or below (2) the zero crossing of the magnetic field, despite the very similar molecular structures. The different behavior of 1 and 2 is interpreted in terms of antiferromagnetic (1) or ferromagnetic (2) intermolecular interactions, which are discussed in view of the subtle differences of intermolecular contacts within the crystal lattice.

5.
Chemistry ; 16(16): 4784-92, 2010 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-20306503

RESUMEN

Reaction of cobalt(II) chloride hexahydrate with N-substituted diethanolamines H(2)L(2-4) (3) in the presence of LiH in anhydrous THF leads under anaerobic conditions to the formation of three isostructural tetranuclear cobalt(II) complexes [Co(II) (4)(Cl)(4)(HL(2-4))(4)] (4) with a [Co(4)(mu(3)-O)(4)](4+) cubane core. According to X-ray structural analyses, the complexes 4 a,c crystallize in the tetragonal space group I4(1)/a, whereas for complex 4 b the tetragonal space group P$\bar 4$ was found. In the solid state the orientation of the cubane cores and the formation of a 3D framework were controlled by the ligand substituents of the cobalt(II) cubanes 4. This also allowed detailed magnetic investigations on single crystals. The analysis of the SQUID magnetic susceptibility data for 4 a gave intramolecular ferromagnetic couplings of the cobalt(II) ions (J(1) approximately 20.4 K, J(2) approximately 7.6 K), resulting in an S=6 ground-state multiplet. The anisotropy was found to be of the easy-axis type (D=-1.55 K) with a resulting anisotropy barrier of Delta approximately 55.8 K. Two-dimensional electron-gas (2DEG) Hall magnetization measurements revealed that complex 4 a is a single-molecule magnet and shows hysteretic magnetization characteristics with typical temperature and sweep-rate dependencies below a blocking temperature of about 4.4 K. The hysteresis loops collapse at zero field owing to fast quantum tunneling of the magnetization (QTM). The structural and electronic properties of cobalt(II) cubane 4 a, deposited on a highly oriented pyrolytic graphite (HOPG) surface, were investigated by means of STM and current imaging tunneling spectroscopy (CITS) at RT and standard atmospheric pressure. In CITS measurements the rather large contrast found at the expected locations of the metal centers of the molecules indicated the presence of a strongly localized LUMO.


Asunto(s)
Cobalto/química , Dietilaminas/química , Dietilaminas/síntesis química , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Cristalografía por Rayos X , Ligandos , Espectroscopía de Resonancia Magnética , Magnetismo , Microscopía de Túnel de Rastreo , Estructura Molecular , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...