Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 128(6): 805-819, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34472592

RESUMEN

BACKGROUND AND AIMS: Quantifying the Earth's forest above-ground biomass (AGB) is indispensable for effective climate action and developing forest policy. Yet, current allometric scaling models (ASMs) to estimate AGB suffer several drawbacks related to model selection and uncertainties about calibration data traceability. Terrestrial laser scanning (TLS) offers a promising non-destructive alternative. Tree volume is reconstructed from TLS point clouds with quantitative structure models (QSMs) and converted to AGB with wood basic density. Earlier studies have found overall TLS-derived forest volume estimates to be accurate, but highlighted problems for reconstructing finer branches. Our objective was to evaluate TLS for estimating tree volumes by comparison with reference volumes and volumes from ASMs. METHODS: We quantified the woody volume of 65 trees in Belgium (from 77 to 2800 L; Pinus sylvestris, Fagus sylvatica, Larix decidua, and Fraxinus excelsior) with QSMs and destructive reference measurements. We tested a volume expansion factor (VEF) approach by multiplying the solid and merchantable volume from QSMs by literature VEF values. KEY RESULTS: Stem volume was reliably estimated with TLS. Total volume was overestimated by +21 % using original QSMs, by +9 % and -12 % using two sets of VEF-augmented QSMs, and by -7.3 % using best-available ASMs. The most accurate method differed per site, and the prediction errors for each method varied considerably between sites. CONCLUSIONS: VEF-augmented QSMs were only slightly better than original QSMs for estimating tree volume for common species in temperate forests. Despite satisfying estimates with ASMs, the model choice was a large source of uncertainty, and species-specific models did not always exist. Therefore, we advocate for further improving tree volume reconstructions with QSMs, especially for fine branches, instead of collecting more ground-truth data to calibrate VEF and allometric models. Promising developments such as improved co-registration and smarter filtering approaches are ongoing to further constrain volumetric errors in TLS-derived estimates.


Asunto(s)
Fagus , Bosques , Biomasa , Rayos Láser , Árboles
2.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190524, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32892732

RESUMEN

Drought and heat events, such as the 2018 European drought, interact with the exchange of energy between the land surface and the atmosphere, potentially affecting albedo, sensible and latent heat fluxes, as well as CO2 exchange. Each of these quantities may aggravate or mitigate the drought, heat, their side effects on productivity, water scarcity and global warming. We used measurements of 56 eddy covariance sites across Europe to examine the response of fluxes to extreme drought prevailing most of the year 2018 and how the response differed across various ecosystem types (forests, grasslands, croplands and peatlands). Each component of the surface radiation and energy balance observed in 2018 was compared to available data per site during a reference period 2004-2017. Based on anomalies in precipitation and reference evapotranspiration, we classified 46 sites as drought affected. These received on average 9% more solar radiation and released 32% more sensible heat to the atmosphere compared to the mean of the reference period. In general, drought decreased net CO2 uptake by 17.8%, but did not significantly change net evapotranspiration. The response of these fluxes differed characteristically between ecosystems; in particular, the general increase in the evaporative index was strongest in peatlands and weakest in croplands. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Asunto(s)
Atmósfera/análisis , Cambio Climático , Sequías , Granjas , Bosques , Pradera , Humedales , Europa (Continente)
3.
Plant Cell Environ ; 39(3): 539-55, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26386252

RESUMEN

Leaves of fast-growing, woody bioenergy crops often emit volatile organic compounds (VOC). Some reactive VOC (especially isoprene) play a key role in climate forcing and may negatively affect local air quality. We monitored the seasonal exchange of VOC using the eddy covariance technique in a 'coppiced' poplar plantation. The complex interactions of VOC fluxes with climatic and physiological variables were also explored by using an artificial neural network (Self Organizing Map). Isoprene and methanol were the most abundant VOC emitted by the plantation. Rapid development of the canopy (and thus of the leaf area index, LAI) was associated with high methanol emissions and high rates of gross primary production (GPP) since the beginning of the growing season, while the onset of isoprene emission was delayed. The highest emissions of isoprene, and of isoprene photo-oxidation products (Methyl Vinyl Ketone and Methacrolein, iox ), occurred on the hottest and sunniest days, when GPP and evapotranspiration were highest, and formaldehyde was significantly deposited. Canopy senescence enhanced the exchange of oxygenated VOC. The accuracy of methanol and isoprene emission simulations with the Model of Emissions of Gases and Aerosols from Nature increased by applying a function to modify their basal emission factors, accounting for seasonality of GPP or LAI.


Asunto(s)
Biocombustibles , Hojas de la Planta/crecimiento & desarrollo , Populus/fisiología , Estaciones del Año , Compuestos Orgánicos Volátiles/metabolismo , Butadienos/análisis , Carbono/análisis , Ambiente , Hemiterpenos/análisis , Espectrometría de Masas , Metanol/análisis , Modelos Biológicos , Pentanos/análisis , Hojas de la Planta/fisiología , Factores de Tiempo
4.
New Phytol ; 201(4): 1289-1303, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24206564

RESUMEN

• Attempts to combine biometric and eddy-covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. • We assessed above-ground biomass changes at five long-term EC forest stations based on tree-ring width and wood density measurements, together with multiple allometric models. Measurements were validated with site-specific biomass estimates and compared with the sum of monthly CO2 fluxes between 1997 and 2009. • Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible and suggested that carbon sequestered between January and July is mainly used for volume increase, whereas that taken up between August and September supports a combination of cell wall thickening and storage. The inter-annual variability in above-ground woody carbon uptake was significantly linked with wood production at the sites, ranging between 110 and 370 g C m(-2) yr(-1) , thereby accounting for 10-25% of gross primary productivity (GPP), 15-32% of terrestrial ecosystem respiration (TER) and 25-80% of NEP. • The observed seasonal partitioning of carbon used to support different wood formation processes refines our knowledge on the dynamics and magnitude of carbon allocation in forests across the major European climatic zones. It may thus contribute, for example, to improved vegetation model parameterization and provides an enhanced framework to link tree-ring parameters with EC measurements.


Asunto(s)
Secuestro de Carbono , Ecosistema , Árboles/crecimiento & desarrollo , Madera/metabolismo , Biomasa , Carbono/metabolismo , Europa (Continente) , Geografía , Estaciones del Año
5.
New Phytol ; 194(3): 775-783, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22404566

RESUMEN

• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.


Asunto(s)
Dióxido de Carbono/metabolismo , Ecosistema , Plantas/metabolismo , Temperatura , Aclimatación , Dióxido de Carbono/efectos de la radiación , Cambio Climático , Plantas/efectos de la radiación , Lluvia , Energía Solar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...