Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Methods Microsc ; 1(1): 49-64, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39119255

RESUMEN

Elucidating the 3D nanoscale structure of tissues and cells is essential for understanding the complexity of biological processes. Electron microscopy (EM) offers the resolution needed for reliable interpretation, but the limited throughput of electron microscopes has hindered its ability to effectively image large volumes. We report a workflow for volume EM with FAST-EM, a novel multibeam scanning transmission electron microscope that speeds up acquisition by scanning the sample in parallel with 64 electron beams. FAST-EM makes use of optical detection to separate the signals of the individual beams. The acquisition and 3D reconstruction of ultrastructural data from multiple biological samples is demonstrated. The results show that the workflow is capable of producing large reconstructed volumes with high resolution and contrast to address biological research questions within feasible acquisition time frames.

2.
Front Immunol ; 15: 1393248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114661

RESUMEN

Objective: Beta cell destruction in type 1 diabetes (T1D) results from the combined effect of inflammation and recurrent autoimmunity. In recent years, the role played by beta cells in the development of T1D has evolved from passive victims of the immune system to active contributors in their own destruction. We and others have demonstrated that perturbations in the islet microenvironment promote endoplasmic reticulum (ER) stress in beta cells, leading to enhanced immunogenicity. Among the underlying mechanisms, secretion of extracellular vesicles (EVs) by beta cells has been suggested to mediate the crosstalk with the immune cell compartment. Methods: To study the role of cellular stress in the early events of T1D development, we generated a novel cellular model for constitutive ER stress by modulating the expression of HSPA5, which encodes BiP/GRP78, in EndoC-ßH1 cells. To investigate the role of EVs in the interaction between beta cells and the immune system, we characterized the EV miRNA cargo and evaluated their effect on innate immune cells. Results: Analysis of the transcriptome showed that HSPA5 knockdown resulted in the upregulation of signaling pathways involved in the unfolded protein response (UPR) and changes the miRNA content of EVs, including reduced levels of miRNAs involved in IL-1ß signaling. Treatment of primary human monocytes with EVs from stressed beta cells resulted in increased surface expression of CD11b, HLA-DR, CD40 and CD86 and upregulation of IL-1ß and IL-6. Conclusion: These findings indicate that the content of EVs derived from stressed beta cells can be a mediator of islet inflammation.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Vesículas Extracelulares , Células Secretoras de Insulina , MicroARNs , Monocitos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Monocitos/inmunología , Monocitos/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/inmunología , Humanos , Estrés del Retículo Endoplásmico/inmunología , MicroARNs/genética , Inflamación/inmunología , Inflamación/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Animales , Línea Celular , Islotes Pancreáticos/inmunología , Islotes Pancreáticos/metabolismo , Transducción de Señal , Respuesta de Proteína Desplegada/inmunología
3.
J Invest Dermatol ; 144(2): 284-295.e16, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37716648

RESUMEN

Desmosomes are dynamic complex protein structures involved in cellular adhesion. Disruption of these structures by loss-of-function variants in desmosomal genes leads to a variety of skin- and heart-related phenotypes. In this study, we report TUFT1 as a desmosome-associated protein, implicated in epidermal integrity. In two siblings with mild skin fragility, woolly hair, and mild palmoplantar keratoderma but without a cardiac phenotype, we identified a homozygous splice-site variant in the TUFT1 gene, leading to aberrant mRNA splicing and loss of TUFT1 protein. Patients' skin and keratinocytes showed acantholysis, perinuclear retraction of intermediate filaments, and reduced mechanical stress resistance. Immunolabeling and transfection studies showed that TUFT1 is positioned within the desmosome and that its location is dependent on the presence of the desmoplakin carboxy-terminal tail. A Tuft1-knockout mouse model mimicked the patients' phenotypes. Altogether, this study reveals TUFT1 as a desmosome-associated protein, whose absence causes skin fragility, woolly hair, and palmoplantar keratoderma.


Asunto(s)
Enfermedades del Cabello , Queratodermia Palmoplantar , Anomalías Cutáneas , Animales , Humanos , Ratones , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Desmosomas/metabolismo , Cabello/metabolismo , Enfermedades del Cabello/genética , Enfermedades del Cabello/metabolismo , Queratodermia Palmoplantar/genética , Queratodermia Palmoplantar/metabolismo , Piel/metabolismo , Anomalías Cutáneas/metabolismo
4.
Ultramicroscopy ; 256: 113877, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37931528

RESUMEN

Recent advances in electron microscopy techniques have led to a significant scale up in volumetric imaging of biological tissue. The throughput of electron microscopes, however, remains a limiting factor for the volume that can be imaged in high resolution within reasonable time. Faster detection methods will improve throughput. Here, we have characterized and benchmarked a novel detection technique for scanning electron microscopy: optical scanning transmission electron microscopy (OSTEM). A qualitative and quantitative comparison was performed between OSTEM, secondary and backscattered electron detection and annular dark field detection in scanning transmission electron microscopy. Our analysis shows that OSTEM produces images similar to backscattered electron detection in terms of contrast, resolution and signal-to-noise ratio. OSTEM can complement large scale imaging with (scanning) transmission electron microscopy and has the potential to speed up imaging in single-beam scanning electron microscope.

5.
Sci Rep ; 13(1): 18822, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914850

RESUMEN

A Kinase Interacting Protein 1 (AKIP1) is a signalling adaptor that promotes mitochondrial respiration and attenuates mitochondrial oxidative stress in cultured cardiomyocytes. We sought to determine whether AKIP1 influences mitochondrial function and the mitochondrial adaptation in response to exercise in vivo. We assessed mitochondrial respiratory capacity, as well as electron microscopy and mitochondrial targeted-proteomics in hearts from mice with cardiomyocyte-specific overexpression of AKIP1 (AKIP1-TG) and their wild type (WT) littermates. These parameters were also assessed after four weeks of voluntary wheel running. In contrast to our previous in vitro study, respiratory capacity measured as state 3 respiration on palmitoyl carnitine was significantly lower in AKIP1-TG compared to WT mice, whereas state 3 respiration on pyruvate remained unaltered. Similar findings were observed for maximal respiration, after addition of FCCP. Mitochondrial DNA damage and oxidative stress markers were not elevated in AKIP1-TG mice and gross mitochondrial morphology was similar. Mitochondrial targeted-proteomics did reveal reductions in mitochondrial proteins involved in energy metabolism. Exercise performance was comparable between genotypes, whereas exercise-induced cardiac hypertrophy was significantly increased in AKIP1-TG mice. After exercise, mitochondrial state 3 respiration on pyruvate substrates was significantly lower in AKIP1-TG compared with WT mice, while respiration on palmitoyl carnitine was not further decreased. This was associated with increased mitochondrial fission on electron microscopy, and the activation of pathways associated with mitochondrial fission and mitophagy. This study suggests that AKIP1 regulates the mitochondrial proteome involved in energy metabolism and promotes mitochondrial turnover after exercise. Future studies are required to unravel the mechanistic underpinnings and whether the mitochondrial changes are required for the AKIP1-induced physiological cardiac growth.


Asunto(s)
Proteínas Mitocondriales , Actividad Motora , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Metabolismo Energético , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Recambio Mitocondrial , Miocitos Cardíacos/metabolismo , Piruvatos/metabolismo
6.
Circ Res ; 133(12): 1006-1021, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-37955153

RESUMEN

BACKGROUND: The p.Arg14del variant of the PLN (phospholamban) gene causes cardiomyopathy, leading to severe heart failure. Calcium handling defects and perinuclear PLN aggregation have both been suggested as pathological drivers of this disease. Dwarf open reading frame (DWORF) has been shown to counteract PLN regulatory calcium handling function in the sarco/endoplasmic reticulum (S/ER). Here, we investigated the potential disease-modulating action of DWORF in this cardiomyopathy and its effects on calcium handling and PLN aggregation. METHODS: We studied a PLN-R14del mouse model, which develops cardiomyopathy with similar characteristics as human patients, and explored whether cardiac DWORF overexpression could delay cardiac deterioration. To this end, R14Δ/Δ (homozygous PLN-R14del) mice carrying the DWORF transgene (R14Δ/ΔDWORFTg [R14Δ/Δ mice carrying the DWORF transgene]) were used. RESULTS: DWORF expression was suppressed in hearts of R14Δ/Δ mice with severe heart failure. Restoration of DWORF expression in R14Δ/Δ mice delayed cardiac fibrosis and heart failure and increased life span >2-fold (from 8 to 18 weeks). DWORF accelerated sarcoplasmic reticulum calcium reuptake and relaxation in isolated cardiomyocytes with wild-type PLN, but in R14Δ/Δ cardiomyocytes, sarcoplasmic reticulum calcium reuptake and relaxation were already enhanced, and no differences were detected between R14Δ/Δ and R14Δ/ΔDWORFTg. Rather, DWORF overexpression delayed the appearance and formation of large pathogenic perinuclear PLN clusters. Careful examination revealed colocalization of sarcoplasmic reticulum markers with these PLN clusters in both R14Δ/Δ mice and human p.Arg14del PLN heart tissue, and hence these previously termed aggregates are comprised of abnormal organized S/ER. This abnormal S/ER organization in PLN-R14del cardiomyopathy contributes to cardiomyocyte cell loss and replacement fibrosis, consequently resulting in cardiac dysfunction. CONCLUSIONS: Disorganized S/ER is a major characteristic of PLN-R14del cardiomyopathy in humans and mice and results in cardiomyocyte death. DWORF overexpression delayed PLN-R14del cardiomyopathy progression and extended life span in R14Δ/Δ mice, by reducing abnormal S/ER clusters.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Humanos , Ratones , Animales , Retículo Sarcoplasmático/metabolismo , Calcio/metabolismo , Longevidad , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
8.
Med Image Anal ; 89: 102920, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37572414

RESUMEN

Electron microscopy (EM) enables high-resolution imaging of tissues and cells based on 2D and 3D imaging techniques. Due to the laborious and time-consuming nature of manual segmentation of large-scale EM datasets, automated segmentation approaches are crucial. This review focuses on the progress of deep learning-based segmentation techniques in large-scale cellular EM throughout the last six years, during which significant progress has been made in both semantic and instance segmentation. A detailed account is given for the key datasets that contributed to the proliferation of deep learning in 2D and 3D EM segmentation. The review covers supervised, unsupervised, and self-supervised learning methods and examines how these algorithms were adapted to the task of segmenting cellular and sub-cellular structures in EM images. The special challenges posed by such images, like heterogeneity and spatial complexity, and the network architectures that overcame some of them are described. Moreover, an overview of the evaluation measures used to benchmark EM datasets in various segmentation tasks is provided. Finally, an outlook of current trends and future prospects of EM segmentation is given, especially with large-scale models and unlabeled images to learn generic features across EM datasets.


Asunto(s)
Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Electrónica , Algoritmos , Imagenología Tridimensional/métodos
10.
Acta Neuropathol Commun ; 11(1): 100, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340488

RESUMEN

Multiple sclerosis (MS) pathophysiology includes inflammation, demyelination and neurodegeneration, but the exact mechanisms of disease initiation and progression are unknown. A major feature of lesions is lack of myelin, which increases axonal energy demand and requires adaptation in number and size of mitochondria. Outside lesions, subtle and diffuse alterations are observed in normal appearing white matter (NAWM) and normal appearing grey matter (NAGM), including increased oxidative stress, reduced axon density and changes in myelin composition and morphology. On an ultrastructural level, only limited data is available on alterations in myelinated axons. We generated large scale 2D scanning transmission electron microscopy images ('nanotomy') of non-demyelinated brain tissue of control and progressive MS donors, accessible via an open-access online repository. We observed a reduced density of myelinated axons in NAWM, without a decrease in cross-sectional axon area. Small myelinated axons were less frequently and large myelinated axons were more frequently present in NAWM, while the g-ratio was similar. The correlation between axonal mitochondrial radius and g-ratio was lost in NAWM, but not in NAGM. Myelinated axons in control GM and NAGM had a similar g-ratio and radius distribution. We hypothesize that axonal loss in NAWM is likely compensated by swelling of the remaining myelinated axons and subsequent adjustment of myelin thickness to maintain their g-ratio. Failure of axonal mitochondria to adjust their size and fine-tuning of myelin thickness may render NAWM axons and their myelin more susceptible to injury.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Sustancia Blanca , Humanos , Esclerosis Múltiple/patología , Sustancia Blanca/patología , Estudios Transversales , Axones/patología , Esclerosis Múltiple Crónica Progresiva/patología , Vaina de Mielina/patología , Encéfalo/patología
11.
Sci Rep ; 13(1): 4046, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899057

RESUMEN

A Kinase Interacting Protein 1 (AKIP1) is a signalling adaptor that promotes physiological hypertrophy in vitro. The purpose of this study is to determine if AKIP1 promotes physiological cardiomyocyte hypertrophy in vivo. Therefore, adult male mice with cardiomyocyte-specific overexpression of AKIP1 (AKIP1-TG) and wild type (WT) littermates were caged individually for four weeks in the presence or absence of a running wheel. Exercise performance, heart weight to tibia length (HW/TL), MRI, histology, and left ventricular (LV) molecular markers were evaluated. While exercise parameters were comparable between genotypes, exercise-induced cardiac hypertrophy was augmented in AKIP1-TG vs. WT mice as evidenced by an increase in HW/TL by weighing scale and in LV mass on MRI. AKIP1-induced hypertrophy was predominantly determined by an increase in cardiomyocyte length, which was associated with reductions in p90 ribosomal S6 kinase 3 (RSK3), increments of phosphatase 2A catalytic subunit (PP2Ac) and dephosphorylation of serum response factor (SRF). With electron microscopy, we detected clusters of AKIP1 protein in the cardiomyocyte nucleus, which can potentially influence signalosome formation and predispose a switch in transcription upon exercise. Mechanistically, AKIP1 promoted exercise-induced activation of protein kinase B (Akt), downregulation of CCAAT Enhancer Binding Protein Beta (C/EBPß) and de-repression of Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 4 (CITED4). Concludingly, we identified AKIP1 as a novel regulator of cardiomyocyte elongation and physiological cardiac remodelling with activation of the RSK3-PP2Ac-SRF and Akt-C/EBPß-CITED4 pathway. These findings suggest that AKIP1 may serve as a nodal point for physiological reprogramming of cardiac remodelling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Miocitos Cardíacos , Animales , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cardiomegalia/patología , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Remodelación Ventricular
12.
Diabetologia ; 66(5): 884-896, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36884057

RESUMEN

AIMS/HYPOTHESIS: Transcriptome analyses revealed insulin-gene-derived transcripts in non-beta endocrine islet cells. We studied alternative splicing of human INS mRNA in pancreatic islets. METHODS: Alternative splicing of insulin pre-mRNA was determined by PCR analysis performed on human islet RNA and single-cell RNA-seq analysis. Antisera were generated to detect insulin variants in human pancreatic tissue using immunohistochemistry, electron microscopy and single-cell western blot to confirm the expression of insulin variants. Cytotoxic T lymphocyte (CTL) activation was determined by MIP-1ß release. RESULTS: We identified an alternatively spliced INS product. This variant encodes the complete insulin signal peptide and B chain and an alternative C-terminus that largely overlaps with a previously identified defective ribosomal product of INS. Immunohistochemical analysis revealed that the translation product of this INS-derived splice transcript was detectable in somatostatin-producing delta cells but not in beta cells; this was confirmed by light and electron microscopy. Expression of this alternatively spliced INS product activated preproinsulin-specific CTLs in vitro. The exclusive presence of this alternatively spliced INS product in delta cells may be explained by its clearance from beta cells by insulin-degrading enzyme capturing its insulin B chain fragment and a lack of insulin-degrading enzyme expression in delta cells. CONCLUSIONS/INTERPRETATION: Our data demonstrate that delta cells can express an INS product derived from alternative splicing, containing both the diabetogenic insulin signal peptide and B chain, in their secretory granules. We propose that this alternative INS product may play a role in islet autoimmunity and pathology, as well as endocrine or paracrine function or islet development and endocrine destiny, and transdifferentiation between endocrine cells. INS promoter activity is not confined to beta cells and should be used with care when assigning beta cell identity and selectivity. DATA AVAILABILITY: The full EM dataset is available via www.nanotomy.org (for review: http://www.nanotomy.org/OA/Tienhoven2021SUB/6126-368/ ). Single-cell RNA-seq data was made available by Segerstolpe et al [13] and can be found at https://sandberglab.se/pancreas . The RNA and protein sequence of INS-splice was uploaded to GenBank (BankIt2546444 INS-splice OM489474).


Asunto(s)
Insulisina , Islotes Pancreáticos , Humanos , Células Secretoras de Somatostatina/metabolismo , Insulisina/metabolismo , Insulina/genética , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , ARN , Señales de Clasificación de Proteína
13.
Nat Methods ; 20(4): 541-545, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36973546

RESUMEN

We report the evolution of mScarlet3, a cysteine-free monomeric red fluorescent protein with fast and complete maturation, as well as record brightness, quantum yield (75%) and fluorescence lifetime (4.0 ns). The mScarlet3 crystal structure reveals a barrel rigidified at one of its heads by a large hydrophobic patch of internal residues. mScarlet3 behaves well as a fusion tag, displays no apparent cytotoxicity and it surpasses existing red fluorescent proteins as a Förster resonance energy transfer acceptor and as a reporter in transient expression systems.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Humanos , Células HeLa , Proteínas Luminiscentes/metabolismo , Proteína Fluorescente Roja
14.
Nat Cell Biol ; 24(11): 1584-1594, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36302971

RESUMEN

Biogenesis of nuclear pore complexes (NPCs) includes the formation of the permeability barrier composed of phenylalanine-glycine-rich nucleoporins (FG-Nups) that regulate the selective passage of biomolecules across the nuclear envelope. The FG-Nups are intrinsically disordered and prone to liquid-liquid phase separation and aggregation when isolated. How FG-Nups are protected from making inappropriate interactions during NPC biogenesis is not fully understood. Here we find that DNAJB6, a molecular chaperone of the heat shock protein network, forms foci in close proximity to NPCs. The number of these foci decreases upon removal of proteins involved in the early steps of interphase NPC biogenesis. Conversely, when this process is stalled in the last steps, the number of DNAJB6-containing foci increases and these foci are identified as herniations at the nuclear envelope. Immunoelectron tomography shows that DNAJB6 localizes inside the lumen of the herniations arising at NPC biogenesis intermediates. Loss of DNAJB6 results in the accumulation of cytosolic annulate lamellae, which are structures containing partly assembled NPCs, a feature associated with disturbances in NPC biogenesis. We find that DNAJB6 binds to FG-Nups and can prevent the aggregation of the FG region of several FG-Nups in cells and in vitro. Together, our data show that the molecular chaperone DNAJB6 provides quality control during NPC biogenesis and is involved in the surveillance of native intrinsically disordered FG-Nups.


Asunto(s)
Proteínas de Complejo Poro Nuclear , Poro Nuclear , Proteínas de Complejo Poro Nuclear/genética , Poro Nuclear/genética , Poro Nuclear/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Interfase
15.
FEBS Lett ; 596(19): 2497-2512, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35644832

RESUMEN

Microscopic analysis of molecules and physiology in living cells and systems is a powerful tool in life sciences. While in vivo subcellular microscopic analysis of healthy and diseased human organs remains impossible, zebrafish larvae allow studying pathophysiology of many organs using in vivo microscopy. Here, we review the potential of the larval zebrafish pancreas in the context of islets of Langerhans and Type 1 diabetes. We highlight the match of zebrafish larvae with the expanding toolbox of fluorescent probes that monitor cell identity, fate and/or physiology in real time. Moreover, fast and efficient modulation and localization of fluorescence at a subcellular level, through fluorescence microscopy, including confocal and light sheet (single plane illumination) microscopes tailored to in vivo larval research, is addressed. These developments make the zebrafish larvae an extremely powerful research tool for translational research. We foresee that living larval zebrafish models will replace many cell line-based studies in understanding the contribution of molecules, organelles and cells to organ pathophysiology in whole organisms.


Asunto(s)
Islotes Pancreáticos , Pez Cebra , Animales , Colorantes Fluorescentes , Humanos , Larva , Microscopía Fluorescente
16.
Macromol Biosci ; 21(11): e2100192, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34480515

RESUMEN

Electron microscopy is crucial for imaging biological ultrastructure at nanometer resolution. However, electron irradiation also causes specimen damage, reflected in structural and chemical changes that can give rise to alternative signals. Here, luminescence induced by electron-beam irradiation is reported across a range of materials widely used in biological electron microscopy. Electron-induced luminescence is spectrally characterized in two epoxy (Epon, Durcupan) and one methacrylate resin (HM20) over a broad electron fluence range, from 10-4 to 103 mC cm-2 , both with and without embedded biological samples. Electron-induced luminescence is pervasive in polymer resins, embedded biomaterial, and occurs even in fixed, whole cells in the absence of resin. Across media, similar patterns of intensity rise, spectral red-shifting, and bleaching upon increasing electron fluence are observed. Increased landing energies cause reduced scattering in the specimen shifting the luminescence profiles to higher fluences. Predictable and tunable electron-induced luminescence in natural and synthetic polymer media is advantageous for turning many polymers into luminescent nanostructures or to fluorescently visualize (micro)plastics. Furthermore, these findings provide perspective to direct electron-beam excitation approaches like cathodoluminescence that may be obscured by these nonspecific electron-induced signals.


Asunto(s)
Materiales Biocompatibles/química , Polímeros/química , Células HeLa , Humanos , Luminiscencia , Microscopía/métodos
17.
Microsc Microanal ; 27(4): 878-888, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34108070

RESUMEN

A profound characteristic of field cancerization is alterations in chromatin packing. This study aimed to quantify these alterations using electron microscopy image analysis of buccal mucosa cells of laryngeal, esophageal, and lung cancer patients. Analysis was done on normal-appearing mucosa, believed to be within the cancerization field, and not tumor itself. Large-scale electron microscopy (nanotomy) images were acquired of cancer patients and controls. Within the nuclei, the chromatin packing of euchromatin and heterochromatin was characterized. Furthermore, the chromatin organization was quantified through chromatin packing density scaling. A significant difference was found between the cancer and control groups in the chromatin packing density scaling parameter for length scales below the optical diffraction limit (200 nm) in both the euchromatin (p = 0.002) and the heterochromatin (p = 0.006). The chromatin packing scaling analysis also indicated that the chromatin organization of cancer patients deviated significantly from the control group. They might allow for novel strategies for cancer risk stratification and diagnosis with high sensitivity. This could aid clinicians in personalizing screening strategies for high-risk patients and follow-up strategies for treated cancer patients.


Asunto(s)
Cromatina , Mucosa Bucal , Neoplasias de la Boca , Eucromatina , Heterocromatina , Humanos , Microscopía Electrónica , Mucosa Bucal/citología , Neoplasias de la Boca/diagnóstico
18.
J Struct Biol X ; 5: 100046, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763642

RESUMEN

Large-scale electron microscopy (EM) allows analysis of both tissues and macromolecules in a semi-automated manner, but acquisition rate forms a bottleneck. We reasoned that a negative bias potential may be used to enhance signal collection, allowing shorter dwell times and thus increasing imaging speed. Negative bias potential has previously been used to tune penetration depth in block-face imaging. However, optimization of negative bias potential for application in thin section imaging will be needed prior to routine use and application in large-scale EM. Here, we present negative bias potential optimized through a combination of simulations and empirical measurements. We find that the use of a negative bias potential generally results in improvement of image quality and signal-to-noise ratio (SNR). The extent of these improvements depends on the presence and strength of a magnetic immersion field. Maintaining other imaging conditions and aiming for the same image quality and SNR, the use of a negative stage bias can allow for a 20-fold decrease in dwell time, thus reducing the time for a week long acquisition to less than 8 h. We further show that negative bias potential can be applied in an integrated correlative light electron microscopy (CLEM) application, allowing fast acquisition of a high precision overlaid LM-EM dataset. Application of negative stage bias potential will thus help to solve the current bottleneck of image acquisition of large fields of view at high resolution in large-scale microscopy.

19.
J Comp Physiol B ; 191(3): 603-615, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33661336

RESUMEN

Immobility is a risk factor for thrombosis due to low blood flow, which may result in activation of the coagulation system, recruitment of platelets and clot formation. Nevertheless, hibernating animals-who endure lengthy periods of immobility-do not show signs of thrombosis throughout or after hibernation. One of the adaptations of hemostasis in hibernators consists of a rapidly reversible reduction of the number of circulating platelets during torpor, i.e., the hibernation phase with reduction of metabolic rate, low blood flow and immobility. It is unknown whether these platelet dynamics in hibernating hamsters originate from storage and release, as suggested for ground squirrel, or from breakdown and de novo synthesis. A reduction in detaching forces due to low blood flow can induce reversible adhesion of platelets to the vessel wall, which is called margination. Here, we hypothesized that storage-and-release by margination to the vessel wall induces reversible thrombocytopenia in torpor. Therefore, we transfused labeled platelets in hibernating Syrian hamster (Mesocricetus auratus) and platelets were analyzed using flow cytometry and electron microscopy. The half-life of labeled platelets was extended from 20 to 30 h in hibernating animals compared to non-hibernating control hamsters. More than 90% of labeled platelets were cleared from the circulation during torpor, followed by emergence during arousal which supports storage-and-release to govern thrombocytopenia in torpor. Furthermore, the low number of immature platelets, plasma level of interleukin-1α and normal numbers of megakaryocytes in bone marrow make platelet synthesis or megakaryocyte rupture via interleukin-1α unlikely to account for the recovery of platelet counts upon arousal. Finally, using large-scale electron microscopy we revealed platelets to accumulate in liver sinusoids, but not in spleen or lung, during torpor. These results thus demonstrate that platelet dynamics in hibernation are caused by storage and release of platelets, most likely by margination to the vessel wall in liver sinusoids. Translating the molecular mechanisms that govern platelet retention in the liver, may be of major relevance for hemostatic management in (accidental) hypothermia and for the development of novel anti-thrombotic strategies.


Asunto(s)
Hibernación , Trombocitopenia , Animales , Plaquetas , Capilares , Cricetinae , Hígado , Sciuridae
20.
Methods Cell Biol ; 162: 89-114, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33707024

RESUMEN

Traditional electron microscopy (EM) can be complemented with analytical EM to increase objective sample information enabling feature identification. Energy dispersive X-ray (EDX) imaging provides semi-quantitative elemental composition of the sample with high spatial resolution (~10nm) in ultrathin sections. However, EDX imaging of biological samples is still challenging as a routine method because many elements are at the detection limit for this technique. Moreover, samples undergo extensive preparation before analysis, which can introduce disruptive X-ray cross-talk or artifacts. EDX data can, for instance, be skewed by (i) osmium interference with endogenous phosphorus, (ii) chlorine present in EPON-embedded tissues, (iii) lead interference with endogenous sulfur, and (iv) potential spectral overlaps with grid material, contrast agents, and the in-microscope sample holder. Here, we highlight how to circumvent these potential pitfalls and outline how we approach sample preparation and analysis for detection of different elements of interest. Utilization of well-considered a priori sample preparation techniques will best ensure conclusive EDX experiments.


Asunto(s)
Manejo de Especímenes , Microscopía Electrónica , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA