Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pulm Circ ; 8(3): 2045894018780734, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29767573

RESUMEN

Interleukin-6 (IL-6) is a pleotropic cytokine that signals through the membrane-bound IL-6 receptor (mIL-6R) to induce anti-inflammatory ("classic-signaling") responses. This cytokine also binds to the soluble IL-6R (sIL-6R) to promote inflammation ("trans-signaling"). mIL-6R expression is restricted to hepatocytes and immune cells. Activated T cells release sIL-6R into adjacent tissues to induce trans-signaling. These cellular actions require the ubiquitously expressed membrane receptor gp130. Reports show that IL-6 is produced by pulmonary arterial smooth muscle cells (PASMCs) exposed to hypoxia in culture as well as the medial layer of the pulmonary arteries in mice exposed to chronic hypoxia (CH), and IL-6 knockout mice are protected from CH-induced pulmonary hypertension (PH). IL-6 has the potential to contribute to a broad array of downstream effects, such as cell growth and migration. CH-induced PH is associated with increased proliferation and migration of PASMCs to previously non-muscularized vessels of the lung. We tested the hypothesis that IL-6 trans-signaling contributes to CH-induced PH and arterial remodeling. Plasma levels of sgp130 were significantly decreased in mice exposed to CH (380 mmHg) for five days compared to normoxic control mice (630 mmHg), while sIL-6R levels were unchanged. Consistent with our hypothesis, mice that received the IL-6 trans-signaling-specific inhibitor sgp130Fc, a fusion protein of the soluble extracellular portion of gp130 with the constant portion of the mouse IgG1 antibody, showed attenuation of CH-induced increases in right ventricular systolic pressure, right ventricular and pulmonary arterial remodeling as compared to vehicle (saline)-treated control mice. In addition, PASMCs cultured in the presence of IL-6 and sIL-6R showed enhanced migration but not proliferation compared to those treated with IL-6 or sIL-6R alone or in the presence of sgp130Fc. These results indicate that IL-6 trans-signaling contributes to pulmonary arterial cell migration and CH-induced PH.

2.
Biochim Biophys Acta Gene Regul Mech ; 1860(9): 922-935, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28736155

RESUMEN

Two processes are associated with progressive loss of renal function: 1) decreased aquaporin-2 (AQP2) expression and urinary concentrating capacity (Nephrogenic Diabetes Insipidus, NDI); and 2) changes in extracellular matrix (ECM) composition, e.g. increased collagen I (Col I) deposition, characteristic of tubule-interstitial fibrosis. AQP2 expression is regulated by both the ECM-to-intracellular scaffold protein integrin-linked kinase (ILK) by NFATc/AP1 and other transcription factors. In the present work, we used in vivo and in vitro approaches to examine ILK participation in NFATc3/AP-1-mediated increases in AQP2 gene expression. Both NFATc3 knock-out mice and ILK conditional-knockdown mice (cKD-ILK) display symptoms of NDI (polyuria and reduced AQP2 expression). NFATc3 is upregulated in the renal medulla tubular cells of cKD-ILK mice but with reduced nuclear localization. Inner medullary collecting duct mIMCD3 cells were subjected to ILK depletion and transfected with reporter plasmids. Pharmacological activators or inhibitors determined the effect of ILK activity on NFATc/AP-1-dependent increases in transcription of AQP2. Finally, mIMCD3 cultured on Col I showed reduced activity of the ILK/GSK3ß/NFATc/AQP2 axis, suggesting this pathway is a potential target for therapeutic treatment of NDI.


Asunto(s)
Acuaporina 2/genética , Factores de Transcripción NFATC/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transcripción Genética/genética , Animales , Línea Celular , Diabetes Insípida Nefrogénica/genética , Diabetes Insípida Nefrogénica/metabolismo , Integrinas/metabolismo , Médula Renal/metabolismo , Túbulos Renales Colectores/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Poliuria/genética , Poliuria/metabolismo , Factor de Transcripción AP-1/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L609-L624, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28213473

RESUMEN

Inflammation is a prominent pathological feature in pulmonary arterial hypertension, as demonstrated by pulmonary vascular infiltration of inflammatory cells, including T and B lymphocytes. However, the contribution of the adaptive immune system is not well characterized in pulmonary hypertension caused by chronic hypoxia. CD4+ T cells are required for initiating and maintaining inflammation, suggesting that these cells could play an important role in the pathogenesis of hypoxic pulmonary hypertension. Our objective was to test the hypothesis that CD4+ T cells, specifically the T helper 17 subset, contribute to chronic hypoxia-induced pulmonary hypertension. We compared indices of pulmonary hypertension resulting from chronic hypoxia (3 wk) in wild-type mice and recombination-activating gene 1 knockout mice (RAG1-/-, lacking mature T and B cells). Separate sets of mice were adoptively transferred with CD4+, CD8+, or T helper 17 cells before normoxic or chronic hypoxic exposure to evaluate the involvement of specific T cell subsets. RAG1-/- mice had diminished right ventricular systolic pressure and arterial remodeling compared with wild-type mice exposed to chronic hypoxia. Adoptive transfer of CD4+ but not CD8+ T cells restored the hypertensive phenotype in RAG1-/- mice. Interestingly, RAG1-/- mice receiving T helper 17 cells displayed evidence of pulmonary hypertension independent of chronic hypoxia. Supporting our hypothesis, depletion of CD4+ cells or treatment with SR1001, an inhibitor of T helper 17 cell development, prevented increased pressure and remodeling responses to chronic hypoxia. We conclude that T helper 17 cells play a key role in the development of chronic hypoxia-induced pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/inmunología , Hipoxia/complicaciones , Hipoxia/inmunología , Células Th17/inmunología , Traslado Adoptivo , Animales , Presión Sanguínea/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Recuento de Células , Movimiento Celular/efectos de los fármacos , Enfermedad Crónica , Femenino , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Proteínas de Homeodominio/metabolismo , Hipertensión Pulmonar/fisiopatología , Interleucina-17/farmacología , Interleucina-6/metabolismo , Pulmón/metabolismo , Depleción Linfocítica , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sístole/efectos de los fármacos , Sístole/fisiología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Células Th17/efectos de los fármacos
4.
PLoS One ; 12(1): e0170606, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28125639

RESUMEN

Idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are both debilitating lung diseases which can lead to hypoxemia and pulmonary hypertension (PH). Nuclear Factor of Activated T-cells (NFAT) is a transcription factor implicated in the etiology of vascular remodeling in hypoxic PH. We have previously shown that mice lacking the ability to generate Vasoactive Intestinal Peptide (VIP) develop spontaneous PH, pulmonary arterial remodeling and lung inflammation. Inhibition of NFAT attenuated PH in these mice suggesting a connection between NFAT and VIP. To test the hypotheses that: 1) VIP inhibits NFAT isoform c3 (NFATc3) activity in pulmonary vascular smooth muscle cells; 2) lung NFATc3 activation is associated with disease severity in IPF and COPD patients, and 3) VIP and NFATc3 expression correlate in lung tissue from IPF and COPD patients. NFAT activity was determined in isolated pulmonary arteries from NFAT-luciferase reporter mice. The % of nuclei with NFAT nuclear accumulation was determined in primary human pulmonary artery smooth muscle cell (PASMC) cultures; in lung airway epithelia and smooth muscle and pulmonary endothelia and smooth muscle from IPF and COPD patients; and in PASMC from mouse lung sections by fluorescence microscopy. Both NFAT and VIP mRNA levels were measured in lungs from IPF and COPD patients. Empirical strategies applied to test hypotheses regarding VIP, NFATc3 expression and activity, and disease type and severity. This study shows a significant negative correlation between NFAT isoform c3 protein expression levels in PASMC, activity of NFATc3 in pulmonary endothelial cells, expression and activity of NFATc3 in bronchial epithelial cells and lung function in IPF patients, supporting the concept that NFATc3 is activated in the early stages of IPF. We further show that there is a significant positive correlation between NFATc3 mRNA expression and VIP RNA expression only in lungs from IPF patients. In addition, we found that VIP inhibits NFAT nuclear translocation in primary human pulmonary artery smooth muscle cells (PASMC). Early activation of NFATc3 in IPF patients may contribute to disease progression and the increase in VIP expression could be a protective compensatory mechanism.


Asunto(s)
Hipertensión Pulmonar/genética , Fibrosis Pulmonar Idiopática/genética , Factores de Transcripción NFATC/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Péptido Intestinal Vasoactivo/genética , Anciano , Anciano de 80 o más Años , Animales , Proliferación Celular/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Fibrosis Pulmonar Idiopática/etiología , Fibrosis Pulmonar Idiopática/patología , Masculino , Ratones , Persona de Mediana Edad , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Factores de Transcripción NFATC/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/patología , Péptido Intestinal Vasoactivo/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 312(4): H791-H799, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28130342

RESUMEN

Sleep apnea is a risk factor for cardiovascular disease, and intermittent hypoxia (IH, 20 episodes/h of 5% O2-5% CO2 for 7 h/day) to mimic sleep apnea increases blood pressure and impairs hydrogen sulfide (H2S)-induced vasodilation in rats. The enzyme that produces H2S, cystathionine γ-lyase (CSE), is decreased in rat mesenteric artery endothelial cells (EC) following in vivo IH exposure. In silico analysis identified putative nuclear factor of activated T cell (NFAT) binding sites in the CSE promoter. Therefore, we hypothesized that IH exposure reduces Ca2+ concentration ([Ca2+]) activation of calcineurin/NFAT to lower CSE expression and impair vasodilation. In cultured rat aortic EC, inhibiting calcineurin with cyclosporine A reduced CSE mRNA, CSE protein, and luciferase activity driven by a full-length but not a truncated CSE promoter. In male rats exposed to sham or IH conditions for 2 wk, [Ca2+] in EC in small mesenteric arteries from IH rats was lower than in EC from sham rat arteries (Δfura 2 ratio of fluorescence at 340 to 380 nm from Ca2+ free: IH = 0.05 ± 0.02, sham = 0.17 ± 0.03, P < 0.05), and fewer EC were NFATc3 nuclear positive in IH rat arteries than in sham rat arteries (IH = 13 ± 3, sham = 59 ± 11%, P < 0.05). H2S production was also lower in mesenteric tissue from IH rats vs. sham rats. Endothelium-dependent vasodilation to acetylcholine (ACh) was lower in mesenteric arteries from IH rats than in arteries from sham rats, and inhibiting CSE with ß-cyanoalanine diminished ACh-induced vasodilation in arteries from sham but not IH rats but did not affect dilation to the H2S donor NaHS. Thus, IH lowers EC [Ca2+], NFAT activity, CSE expression and activity, and H2S production while inhibiting NFAT activation lowers CSE expression. The observations that IH exposure decreases NFATc3 activation and CSE-dependent vasodilation support a role for NFAT in regulating endothelial H2S production.NEW & NOTEWORTHY This study identifies the calcium-regulated transcription factor nuclear factor of activated T cells as a novel regulator of cystathionine γ-lyase (CSE). This pathway is basally active in mesenteric artery endothelial cells, but, after exposure to intermittent hypoxia to mimic sleep apnea, nuclear factor of activated T cells c3 nuclear translocation and CSE expression are decreased, concomitant with decreased CSE-dependent vasodilation.


Asunto(s)
Cistationina gamma-Liasa/biosíntesis , Células Endoteliales/metabolismo , Hipoxia/metabolismo , Factores de Transcripción NFATC/metabolismo , Acetilcolina/farmacología , Animales , Secuencia de Bases , Calcineurina/metabolismo , Calcio/metabolismo , Células Cultivadas , Cistationina gamma-Liasa/genética , Sulfuro de Hidrógeno/metabolismo , Hipoxia/enzimología , Masculino , Arterias Mesentéricas/citología , Arterias Mesentéricas/metabolismo , Ratas , Ratas Sprague-Dawley , Síndromes de la Apnea del Sueño/genética , Síndromes de la Apnea del Sueño/fisiopatología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
6.
Am J Physiol Lung Cell Mol Physiol ; 311(1): L48-58, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27190058

RESUMEN

The development of chronic hypoxia (CH)-induced pulmonary hypertension is associated with increased pulmonary arterial smooth muscle cell (PASMC) Ca(2+) influx through acid-sensing ion channel-1 (ASIC1) and activation of the Ca(2+)/calcineurin-dependent transcription factor known as nuclear factor of activated T-cells isoform c3 (NFATc3). Whether Ca(2+) influx through ASIC1 contributes to NFATc3 activation in the pulmonary vasculature is unknown. Furthermore, both ASIC1 and calcineurin have been shown to interact with the scaffolding protein known as protein interacting with C kinase-1 (PICK1). In the present study, we tested the hypothesis that ASIC1 contributes to NFATc3 nuclear translocation in PASMC in a PICK1-dependent manner. Using both ASIC1 knockout (ASIC1(-/-)) mice and pharmacological inhibition of ASIC1, we demonstrate that ASIC1 contributes to CH-induced (1 wk at 380 mmHg) and endothelin-1 (ET-1)-induced (10(-7) M) Ca(2+) responses and NFATc3 nuclear import in PASMC. The interaction between ASIC1/PICK1/calcineurin was shown using a Duolink in situ Proximity Ligation Assay. Inhibition of PICK1 by using FSC231 abolished ET-1-induced and ionomycin-induced NFATc3 nuclear import, but it did not alter ET-1-mediated Ca(2+) responses, suggesting that PICK1 acts downstream of Ca(2+) influx. The key findings of the present work are that 1) Ca(2+) influx through ASIC1 mediates CH- and ET-1-induced NFATc3 nuclear import and 2) the scaffolding protein PICK1 is necessary for NFATc3 nuclear import. Together, these data provide an essential link between CH-induced ASIC1-mediated Ca(2+) influx and activation of the NFATc3 transcription factor. Identification of this ASIC1/PICK1/NFATc3 signaling complex increases our understanding of the mechanisms contributing to the vascular remodeling and increased vascular contractility that are associated with CH-induced pulmonary hypertension.


Asunto(s)
Canales Iónicos Sensibles al Ácido/fisiología , Proteínas Portadoras/metabolismo , Miocitos del Músculo Liso/metabolismo , Factores de Transcripción NFATC/metabolismo , Proteínas Nucleares/metabolismo , Transporte Activo de Núcleo Celular , Animales , Señalización del Calcio , Proteínas de Ciclo Celular , Hipoxia de la Célula , Células Cultivadas , Endotelina-1/fisiología , Femenino , Hipertensión Pulmonar/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/patología , Arteria Pulmonar/patología
7.
Am J Physiol Cell Physiol ; 307(10): C928-38, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25163518

RESUMEN

We recently demonstrated increased superoxide (O2(·-)) and decreased H2O2 levels in pulmonary arteries of chronic hypoxia-exposed wild-type and normoxic superoxide dismutase 1 (SOD1) knockout mice. We also showed that this reciprocal change in O2(·-) and H2O2 is associated with elevated activity of nuclear factor of activated T cells isoform c3 (NFATc3) in pulmonary arterial smooth muscle cells (PASMC). This suggests that an imbalance in reactive oxygen species levels is required for NFATc3 activation. However, how such imbalance activates NFATc3 is unknown. This study evaluated the importance of O2(·-) and H2O2 in the regulation of NFATc3 activity. We tested the hypothesis that an increase in O2(·-) enhances actin cytoskeleton dynamics and a decrease in H2O2 enhances intracellular Ca(2+) concentration, contributing to NFATc3 nuclear import and activation in PASMC. We demonstrate that, in PASMC, endothelin-1 increases O2(·-) while decreasing H2O2 production through the decrease in SOD1 activity without affecting SOD protein levels. We further demonstrate that O2(·-) promotes, while H2O2 inhibits, NFATc3 activation in PASMC. Additionally, increased O2(·-)-to-H2O2 ratio activates NFATc3, even in the absence of a Gq protein-coupled receptor agonist. Furthermore, O2(·-)-dependent actin polymerization and low intracellular H2O2 concentration-dependent increases in intracellular Ca(2+) concentration contribute to NFATc3 activation. Together, these studies define important and novel regulatory mechanisms of NFATc3 activation in PASMC by reactive oxygen species.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Músculo Liso Vascular/metabolismo , Factores de Transcripción NFATC/metabolismo , Arteria Pulmonar/metabolismo , Superóxido Dismutasa/biosíntesis , Animales , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Noqueados , Superóxido Dismutasa-1
8.
Am J Physiol Lung Cell Mol Physiol ; 304(9): L613-25, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23475768

RESUMEN

Elevated reactive oxygen species are implicated in pulmonary hypertension (PH). Superoxide dismutase (SOD) limits superoxide bioavailability, and decreased SOD activity is associated with PH. A decrease in SOD activity is expected to increase superoxide and reduce hydrogen peroxide levels. Such an imbalance of superoxide/hydrogen peroxide has been implicated as a mediator of nuclear factor of activated T cells (NFAT) activation in epidermal cells. We have shown that NFATc3 is required for chronic hypoxia-induced PH. However, it is unknown whether NFATc3 is activated in the pulmonary circulation in a mouse model of decreased SOD1 activity and whether this leads to PH. Therefore, we hypothesized that an elevated pulmonary arterial superoxide/hydrogen peroxide ratio activates NFATc3, leading to PH. We found that SOD1 knockout (KO) mice have elevated pulmonary arterial wall superoxide and decreased hydrogen peroxide levels compared with wild-type (WT) littermates. Right ventricular systolic pressure (RVSP) was elevated in SOD1 KO and was associated with pulmonary arterial remodeling. Vasoreactivity to endothelin-1 was also greater in SOD1 KO vs. WT mice. NFAT activity and NFATc3 nuclear localization were increased in pulmonary arteries from SOD1 KO vs. WT mice. Administration of A-285222 (selective NFAT inhibitor) decreased RVSP, arterial wall thickness, vasoreactivity, and NFAT activity in SOD1 KO mice to WT levels. The SOD mimetic, tempol, also reduced NFAT activity, NFATc3 nuclear localization, and RVSP to WT levels. These findings suggest that an elevated superoxide/hydrogen peroxide ratio activates NFAT in pulmonary arteries, which induces vascular remodeling and increases vascular reactivity leading to PH.


Asunto(s)
Hipertensión Pulmonar/etiología , Factores de Transcripción NFATC/fisiología , Superóxido Dismutasa/deficiencia , Animales , Óxidos N-Cíclicos/farmacología , Endotelina-1/farmacología , Femenino , Peróxido de Hidrógeno/metabolismo , Hipoxia/fisiopatología , Masculino , Ratones , Ratones Noqueados , Factores de Transcripción NFATC/antagonistas & inhibidores , Arteria Pulmonar/fisiopatología , Pirazoles/farmacología , Marcadores de Spin , Superóxido Dismutasa-1 , Superóxidos/metabolismo
9.
Vaccine ; 21(11-12): 1066-71, 2003 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-12559781

RESUMEN

The immunologic correlates associated with control of viremia in HIV disease are poorly understood. We hypothesized that structured antiviral drug treatment interruptions could be utilized to better understand the relationship between HIV-specific immunity and viral replication. We thus examined the effects of two 8 weeks antiviral structured treatment interruptions (STIs) in a cohort of HIV-1 chronically infected individuals on highly active antiretroviral treatment (HAART) with (n = 13) and without (n = 12) therapeutic HIV immunizations. In this study, we observed that p24 gag antigen (np24) stimulated MIP-1beta levels and T helper immune responses prior to antiviral drug discontinuation were associated with control of viremia. Stronger and earlier production of gag peptide stimulated gamma interferon was observed in the immunized group during the structured antiviral drug interruptions. These results support the concept that HIV-specific immune responses are associated with control of viremia. Further study of immune-based therapies that enhance HIV-specific immunity is warranted.


Asunto(s)
Vacunas contra el SIDA/uso terapéutico , Fármacos Anti-VIH/administración & dosificación , Terapia Antirretroviral Altamente Activa , Esquema de Medicación , Infecciones por VIH/tratamiento farmacológico , VIH-1/inmunología , Inmunoterapia Activa , Viremia/terapia , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/inmunología , Fármacos Anti-VIH/uso terapéutico , Recuento de Linfocito CD4 , Quimiocina CCL4 , Estudios de Cohortes , Terapia Combinada , Proteína p24 del Núcleo del VIH/sangre , Infecciones por VIH/inmunología , Humanos , Inmunidad Celular , Interferón gamma/biosíntesis , Activación de Linfocitos , Proteínas Inflamatorias de Macrófagos/sangre , Linfocitos T Colaboradores-Inductores/inmunología , Carga Viral , Viremia/tratamiento farmacológico , Viremia/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...