Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 247: 114232, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36308877

RESUMEN

The emerging issue of microplastic pollution of agricultural soils derives from the intensive utilization of plastic mulching film. Although surface runoff may transport microplastic off-site, infiltration may also facilitate microplastic transport from surface soil to deeper depths. Microplastic comprises a relatively new category of soil contaminants, whose transport in the soil has not yet been widely studied. In this study, we investigated microplastic transport from contaminated surface soil (50 g kg-1) driven by irrigation, from permanent wilting point to saturation, and developed an empirical model to characterize the resulting accumulation of microplastic along soil profile. A soil column experiment was conducted under various treatments: the control, 1, 2 and 4 runs of irrigation. Soil samples were collected from inside and outside of soil cracks (if present) in each soil layer (0-2 cm (source layer), 2-5 cm, 5-10 cm, 10-20 cm, 20-30 cm, 30-40 cm, 40-50 cm). The results showed that with increasing irrigation runs, microplastic in the source soil layer decreased, while microplastic contents in deeper soil depths increased significantly (p < 0.05), varying from 7.03 g kg-1 in 2-5 cm to 0.29 g kg-1 in 40-50 cm soil. The microplastic content detected in soil cracks was 1.3-17.8 times higher than that detected in the soil matrix at similar depths, indicating that the transported microplastic is prone to be enriched in soil cracks. In addition, the total amount of transported microplastic increased 1.5 times after four irrigation runs, and the variations were significantly observed especially at deeper soil depths. Based on correlation analyses, data-fitted empirical models that relate cumulative microplastic to the depth of soil layer and irrigation runs indicate that irrigation-facilitated microplastic transport could be well-characterized (R2 >0.92). Further research is needed to develop an physical-based model in order to assess microplastic migration risks driven by irrigation and other agricultural management practices.


Asunto(s)
Microplásticos , Suelo , Polietileno , Plásticos , Agricultura , Riego Agrícola/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...