Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Neurosci ; 49(10): 1268-1287, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30402926

RESUMEN

The brain parses the auditory environment into distinct sounds by identifying those acoustic features in the environment that have common relationships (e.g., spectral regularities) with one another and then grouping together the neuronal representations of these features. Although there is a large literature that tests how the brain tracks spectral regularities that are predictable, it is not known how the auditory system tracks spectral regularities that are not predictable and that change dynamically over time. Furthermore, the contribution of brain regions downstream of the auditory cortex to the coding of spectral regularity is unknown. Here, we addressed these two issues by recording electrocorticographic activity, while human patients listened to tone-burst sequences with dynamically varying spectral regularities, and identified potential neuronal mechanisms of the analysis of spectral regularities throughout the brain. We found that the degree of oscillatory stimulus phase consistency (PC) in multiple neuronal-frequency bands tracked spectral regularity. In particular, PC in the delta-frequency band seemed to be the best indicator of spectral regularity. We also found that these regularity representations existed in multiple regions throughout cortex. This widespread reliable modulation in PC - both in neuronal-frequency space and in cortical space - suggests that phase-based modulations may be a general mechanism for tracking regularity in the auditory system specifically and other sensory systems more generally. Our findings also support a general role for the delta-frequency band in processing the regularity of auditory stimuli.


Asunto(s)
Percepción Auditiva/fisiología , Encéfalo/fisiología , Neuronas/fisiología , Estimulación Acústica , Acústica , Adulto , Electrocorticografía , Potenciales Evocados Auditivos , Femenino , Humanos , Masculino , Procesamiento de Señales Asistido por Computador , Espectrografía del Sonido
2.
Adv Exp Med Biol ; 894: 381-388, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27080679

RESUMEN

The fundamental problem in audition is determining the mechanisms required by the brain to transform an unlabelled mixture of auditory stimuli into coherent perceptual representations. This process is called auditory-scene analysis. The perceptual representations that result from auditory-scene analysis are formed through a complex interaction of perceptual grouping, attention, categorization and decision-making. Despite a great deal of scientific energy devoted to understanding these aspects of hearing, we still do not understand (1) how sound perception arises from neural activity and (2) the causal relationship between neural activity and sound perception. Here, we review the role of the "ventral" auditory pathway in sound perception. We hypothesize that, in the early parts of the auditory cortex, neural activity reflects the auditory properties of a stimulus. However, in latter parts of the auditory cortex, neurons encode the sensory evidence that forms an auditory decision and are causally involved in the decision process. Finally, in the prefrontal cortex, which receives input from the auditory cortex, neural activity reflects the actual perceptual decision. Together, these studies indicate that the ventral pathway contains hierarchical circuits that are specialized for auditory perception and scene analysis.


Asunto(s)
Vías Auditivas/fisiología , Percepción Auditiva/fisiología , Estimulación Acústica , Corteza Auditiva/fisiología , Humanos , Sonido
3.
Int J Psychophysiol ; 95(2): 238-245, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24681354

RESUMEN

The auditory system is designed to transform acoustic information from low-level sensory representations into perceptual representations. These perceptual representations are the computational result of the auditory system's ability to group and segregate spectral, spatial and temporal regularities in the acoustic environment into stable perceptual units (i.e., sounds or auditory objects). Current evidence suggests that the cortex-specifically, the ventral auditory pathway-is responsible for the computations most closely related to perceptual representations. Here, we discuss how the transformations along the ventral auditory pathway relate to auditory percepts, with special attention paid to the processing of vocalizations and categorization, and explore recent models of how these areas may carry out these computations.


Asunto(s)
Corteza Auditiva/fisiología , Vías Auditivas/fisiología , Percepción Auditiva/fisiología , Mapeo Encefálico , Estimulación Acústica , Acústica , Animales , Humanos , Sonido
4.
PLoS Comput Biol ; 10(7): e1003715, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25032683

RESUMEN

Categorization is an important cognitive process. However, the correct categorization of a stimulus is often challenging because categories can have overlapping boundaries. Whereas perceptual categorization has been extensively studied in vision, the analogous phenomenon in audition has yet to be systematically explored. Here, we test whether and how human subjects learn to use category distributions and prior probabilities, as well as whether subjects employ an optimal decision strategy when making auditory-category decisions. We asked subjects to classify the frequency of a tone burst into one of two overlapping, uniform categories according to the perceived tone frequency. We systematically varied the prior probability of presenting a tone burst with a frequency originating from one versus the other category. Most subjects learned these changes in prior probabilities early in testing and used this information to influence categorization. We also measured each subject's frequency-discrimination thresholds (i.e., their sensory uncertainty levels). We tested each subject's average behavior against variations of a Bayesian model that either led to optimal or sub-optimal decision behavior (i.e. probability matching). In both predicting and fitting each subject's average behavior, we found that probability matching provided a better account of human decision behavior. The model fits confirmed that subjects were able to learn category prior probabilities and approximate forms of the category distributions. Finally, we systematically explored the potential ways that additional noise sources could influence categorization behavior. We found that an optimal decision strategy can produce probability-matching behavior if it utilized non-stationary category distributions and prior probabilities formed over a short stimulus history. Our work extends previous findings into the auditory domain and reformulates the issue of categorization in a manner that can help to interpret the results of previous research within a generative framework.


Asunto(s)
Percepción Auditiva/fisiología , Biología Computacional/métodos , Toma de Decisiones/fisiología , Modelos Neurológicos , Estimulación Acústica , Umbral Auditivo/fisiología , Teorema de Bayes , Femenino , Humanos , Aprendizaje/fisiología , Masculino , Análisis y Desempeño de Tareas
5.
J Neurophysiol ; 112(6): 1566-83, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24920021

RESUMEN

Our understanding of the large-scale population dynamics of neural activity is limited, in part, by our inability to record simultaneously from large regions of the cortex. Here, we validated the use of a large-scale active microelectrode array that simultaneously records 196 multiplexed micro-electrocortigraphical (µECoG) signals from the cortical surface at a very high density (1,600 electrodes/cm(2)). We compared µECoG measurements in auditory cortex using a custom "active" electrode array to those recorded using a conventional "passive" µECoG array. Both of these array responses were also compared with data recorded via intrinsic optical imaging, which is a standard methodology for recording sound-evoked cortical activity. Custom active µECoG arrays generated more veridical representations of the tonotopic organization of the auditory cortex than current commercially available passive µECoG arrays. Furthermore, the cortical representation could be measured efficiently with the active arrays, requiring as little as 13.5 s of neural data acquisition. Next, we generated spectrotemporal receptive fields from the recorded neural activity on the active µECoG array and identified functional organizational principles comparable to those observed using intrinsic metabolic imaging and single-neuron recordings. This new electrode array technology has the potential for large-scale, temporally precise monitoring and mapping of the cortex, without the use of invasive penetrating electrodes.


Asunto(s)
Corteza Auditiva/fisiología , Mapeo Encefálico/instrumentación , Electroencefalografía/instrumentación , Animales , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Potenciales Evocados Auditivos , Masculino , Microelectrodos , Imagen Óptica/métodos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...