Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 22(1): 111, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296442

RESUMEN

BACKGROUND: Lactic Acid Bacteria such as Lactococcus lactis, Latilactobacillus sakei (basonym: Lactobacillus sakei) and Lactiplantibacillus plantarum (basonym: Lactobacillus plantarum) have gained importance as recombinant cell factories. Although it was believed that proteins produced in these lipopolysaccharides (LPS)-free microorganisms do not aggregate, it has been shown that L. lactis produce inclusion bodies (IBs) during the recombinant production process. These protein aggregates contain biologically active protein, which is slowly released, being a biomaterial with a broad range of applications including the obtainment of soluble protein. However, the aggregation phenomenon has not been characterized so far in L. plantarum. Thus, the current study aims to determine the formation of protein aggregates in L. plantarum and evaluate their possible applications. RESULTS: To evaluate the formation of IBs in L. plantarum, the catalytic domain of bovine metalloproteinase 9 (MMP-9cat) protein has been used as model protein, being a prone-to-aggregate (PTA) protein. The electron microscopy micrographs showed the presence of electron-dense structures in L. plantarum cytoplasm, which were further purified and analyzed. The ultrastructure of the isolated protein aggregates, which were smooth, round and with an average size of 250-300 nm, proved that L. plantarum also forms IBs under recombinant production processes of PTA proteins. Besides, the protein embedded in these aggregates was fully active and had the potential to be used as a source of soluble protein or as active nanoparticles. The activity determination of the soluble protein solubilized from these IBs using non-denaturing protocols proved that fully active protein could be obtained from these protein aggregates. CONCLUSIONS: These results proved that L. plantarum forms aggregates under recombinant production conditions. These aggregates showed the same properties as IBs formed in other expression systems such as Escherichia coli or L. lactis. Thus, this places this LPS-free microorganism as an interesting alternative to produce proteins of interest for the biopharmaceutical industry, which are obtained from the IBs in an important number of cases.


Asunto(s)
Cuerpos de Inclusión , Lactobacillus plantarum , Animales , Bovinos , Escherichia coli/metabolismo , Cuerpos de Inclusión/metabolismo , Lactobacillus plantarum/metabolismo , Agregado de Proteínas , Proteínas Recombinantes
2.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35163400

RESUMEN

Endothelial cells throughout the body are heterogeneous, and this is tightly linked to the specific functions of organs and tissues. Heterogeneity is already determined from development onwards and ranges from arterial/venous specification to microvascular fate determination in organ-specific differentiation. Acknowledging the different phenotypes of endothelial cells and the implications of this diversity is key for the development of more specialized tissue engineering and vascular repair approaches. However, although novel technologies in transcriptomics and proteomics are facilitating the unraveling of vascular bed-specific endothelial cell signatures, still much research is based on the use of insufficiently specialized endothelial cells. Endothelial cells are not only heterogeneous, but their specialized phenotypes are also dynamic and adapt to changes in their microenvironment. During the last decades, strong collaborations between molecular biology, mechanobiology, and computational disciplines have led to a better understanding of how endothelial cells are modulated by their mechanical and biochemical contexts. Yet, because of the use of insufficiently specialized endothelial cells, there is still a huge lack of knowledge in how tissue-specific biomechanical factors determine organ-specific phenotypes. With this review, we want to put the focus on how organ-specific endothelial cell signatures are determined from development onwards and conditioned by their microenvironments during adulthood. We discuss the latest research performed on endothelial cells, pointing out the important implications of mimicking tissue-specific biomechanical cues in culture.


Asunto(s)
Diferenciación Celular , Microambiente Celular , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Animales , Humanos , Especificidad de Órganos , Ingeniería de Tejidos
3.
Methods Mol Biol ; 2406: 389-400, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35089570

RESUMEN

Since inclusion bodies (IBs) contain an important amount of properly folded and active proteins, their solubilization using nondenaturing conditions to obtain aggregation-prone proteins has gained interest. Through these conditions, the refolding step is no longer required, which avoids the usual protein yield loss after this process. Here, we reveal a simple methodology to obtain pure and active difficult-to-produce proteins using two LPS-free expression systems: Lactococcus lactis and Lactobacillus plantarum. This protocol has proven to be successful to obtain proteins which are labile and prone-to-attach (difficult to be purified from other cytoplasmic proteins) and prone-to-aggregate (difficult to be obtained in their soluble form).


Asunto(s)
Lactobacillales , Lactobacillus plantarum , Lactococcus lactis , Cuerpos de Inclusión/metabolismo , Lactococcus lactis/metabolismo , Proteínas Recombinantes/metabolismo , Solubilidad
4.
Methods Mol Biol ; 2406: 469-477, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35089575

RESUMEN

Despite substantial development of production and purification protocols for heterologous recombinant proteins, some proteins are difficult to produce or, when produced, are accumulated in inclusion bodies (IBs). Nondenaturing protocols can be used to recover the entrapped protein from these protein aggregates. In this chapter, we provide a detailed procedure to analyze the physicochemical properties of one of those proteins produced in prokaryotic expression systems. Serum amyloid A3 (SAA3) was recovered from inclusion bodies (IBs) and its secondary structure associated to thermal stability and size was determined by circular dichroism (CD) and dynamic light scattering (DLS), respectively. These techniques were also applied to evaluate the SAA3 interaction with model membranes. These results show the importance of the structural analysis of proteins released from inclusion bodies under nondenaturing procedures, although similar approaches can be extended to any type of recombinant protein preparation.


Asunto(s)
Escherichia coli , Cuerpos de Inclusión , Dicroismo Circular , Escherichia coli/metabolismo , Cuerpos de Inclusión/metabolismo , Control de Calidad , Proteínas Recombinantes/metabolismo
5.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809594

RESUMEN

A detailed workflow to analyze the physicochemical characteristics of mammalian matrix metalloproteinase (MMP-9) protein species obtained from protein aggregates (inclusion bodies-IBs) was followed. MMP-9 was recombinantly produced in the prokaryotic microbial cell factories Clearcoli (an engineered form of Escherichia coli) and Lactococcus lactis, mainly forming part of IBs and partially recovered under non-denaturing conditions. After the purification by affinity chromatography of solubilized MMP-9, four protein peaks were obtained. However, so far, the different conformational protein species forming part of IBs have not been isolated and characterized. Therefore, with the aim to link the physicochemical characteristics of the isolated peaks with their biological activity, we set up a methodological approach that included dynamic light scattering (DLS), circular dichroism (CD), and spectrofluorometric analysis confirming the separation of subpopulations of conformers with specific characteristics. In protein purification procedures, the detailed analysis of the individual physicochemical properties and the biological activity of protein peaks separated by chromatographic techniques is a reliable source of information to select the best-fitted protein populations.


Asunto(s)
Cuerpos de Inclusión/metabolismo , Metaloproteinasa 9 de la Matriz/química , Proteínas Recombinantes/química , Animales , Bovinos , Cromatografía de Afinidad , Dicroismo Circular , Dispersión Dinámica de Luz , Escherichia coli/metabolismo , Lactobacillus/metabolismo , Metaloproteinasa 9 de la Matriz/aislamiento & purificación , Conformación Proteica , Proteínas Recombinantes/aislamiento & purificación , Solubilidad , Espectrometría de Fluorescencia , Temperatura , Triptófano/química
6.
Front Physiol ; 12: 639645, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716786

RESUMEN

From developmental stages until adulthood, the circulatory system remodels in response to changes in blood flow in order to maintain vascular homeostasis. Remodeling processes can be driven by de novo formation of vessels or angiogenesis, and by the restructuration of already existing vessels, such as vessel enlargement and regression. Notably, vessel enlargement can occur as fast as in few hours in response to changes in flow and pressure. The high plasticity and responsiveness of blood vessels rely on endothelial cells. Changes within the bloodstream, such as increasing shear stress in a narrowing vessel or lowering blood flow in redundant vessels, are sensed by endothelial cells and activate downstream signaling cascades, promoting behavioral changes in the involved cells. This way, endothelial cells can reorganize themselves to restore normal circulation levels within the vessel. However, the dysregulation of such processes can entail severe pathological circumstances with disturbances affecting diverse organs, such as human hereditary telangiectasias. There are different pathways through which endothelial cells react to promote vessel enlargement and mechanisms may differ depending on whether remodeling occurs in the adult or in developmental models. Understanding the molecular mechanisms involved in the fast-adapting processes governing vessel enlargement can open the door to a new set of therapeutical approaches to be applied in occlusive vascular diseases. Therefore, we have outlined here the latest advances in the study of vessel enlargement in physiology and pathology, with a special insight in the pathways involved in its regulation.

7.
Pharmaceutics ; 12(5)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414218

RESUMEN

Bacterial inclusion bodies (IBs) are protein-based nanoparticles of a few hundred nanometers formed during recombinant protein production processes in different bacterial hosts. IBs contain active protein in a mechanically stable nanostructured format that has been broadly characterized, showing promising potential in different fields such as tissue engineering, protein replacement therapies, cancer, and biotechnology. For immunomodulatory purposes, however, the interference of the format immunogenic properties-intrinsic to IBs-with the specific effects of the therapeutic protein is still an uncovered gap. For that, active and inactive forms of the catalytic domain of a matrix metalloproteinase-9 (MMP-9 and mutMMP-9, respectively) have been produced as IBs and compared with the soluble form for dermal inflammatory effects in mmp9 knock-out mice. After protein injections in air-pouches in the mouse model, MMP-9 IBs induce local neutrophil recruitment and increase pro-inflammatory chemokine levels, lasting for at least two days, whereas the effects triggered by the soluble MMP-9 format fade out after 3 h. Interestingly, the IB intrinsic effects (mutMMP-9 IBs) do not last more than 24 h. Therefore, it may be concluded that IBs could be used for the delivery of therapeutic proteins, such as immunomodulating proteins while preserving their stability in the specific tissue and without triggering important unspecific inflammatory responses due to the protein format.

8.
Pharmaceutics ; 12(2)2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32075316

RESUMEN

Inclusion bodies (IBs) are protein nanoclusters obtained during recombinant protein production processes, and several studies have demonstrated their potential as biomaterials for therapeutic protein delivery. Nevertheless, IBs have been, so far, exclusively sifted by their biological activity in vitro to be considered in further protein-based treatments in vivo. Matrix metalloproteinase-9 (MMP-9) protein, which has an important role facilitating the migration of immune cells, was used as model protein. The MMP-9 IBs were compared with their soluble counterpart and with MMP-9 encapsulated in polymeric-based micelles (PM) through ionic and covalent binding. The soluble MMP-9 and the MMP-9-ionic PM showed the highest activity values in vitro. IBs showed the lowest activity values in vitro, but the specific activity evolution in 50% bovine serum at room temperature proved that they were the most stable format. The data obtained with the use of an air-pouch mouse model showed that MMP-9 IBs presented the highest in vivo activity compared to the soluble MMP-9, which was associated only to a low and a transitory peak of activity. These results demonstrated that the in vivo performance is the addition of many parameters that did not always correlate with the in vitro behavior of the protein of interest, becoming especially relevant at evaluating the potential of IBs as a protein-based nanomaterial for therapeutic purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...