Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645018

RESUMEN

Over-activation of the epidermal growth factor receptor (EGFR) is a hallmark of glioblastoma. However, EGFR-targeted therapies have led to minimal clinical response. While delivery of EGFR inhibitors (EGFRis) to the brain constitutes a major challenge, how additional drug-specific features alter efficacy remains poorly understood. We apply highly multiplex single-cell chemical genomics to define the molecular response of glioblastoma to EGFRis. Using a deep generative framework, we identify shared and drug-specific transcriptional programs that group EGFRis into distinct molecular classes. We identify programs that differ by the chemical properties of EGFRis, including induction of adaptive transcription and modulation of immunogenic gene expression. Finally, we demonstrate that pro-immunogenic expression changes associated with a subset of tyrphostin family EGFRis increase the ability of T-cells to target glioblastoma cells.

2.
Tissue Eng Part A ; 25(9-10): 693-706, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30982430

RESUMEN

IMPACT STATEMENT: This study evaluated the biological activity of hydroxylated derivatives of butyrate as inductors of antimicrobial peptides (AMPs) in murine bone marrow-derived macrophages in vitro. A differential modulation of AMP expression by the hydroxylated derivatives of butyrate is shown. The ability of sodium 4-hydroxybutyrate to upregulate AMP expression through a histone deacetylase inhibitory-independent mechanism, and to promote increased resistance to bacterial contamination in vivo are also shown. The findings provide an alternative for prevention of bacterial contamination of implanted biomaterials. Functionalization of biomaterials with hydroxylated derivatives of butyrate can enhance the endogenous antimicrobial activity of the immune system through increased production of AMPs by host cells, thus providing protection against bacterial contamination.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/biosíntesis , Células de la Médula Ósea/metabolismo , Hidroxibutiratos/farmacología , Macrófagos/metabolismo , beta-Defensinas/biosíntesis , Animales , Ratones , Ratas , Ratas Sprague-Dawley , Catelicidinas
3.
Tissue Eng Part A ; 24(1-2): 34-46, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28345417

RESUMEN

Mounting evidence suggests that site-appropriate loading of implanted extracellular matrix (ECM) bioscaffolds and the surrounding microenvironment is an important tissue remodeling determinant, although the role at the cellular level in ECM-mediated skeletal muscle remodeling remains unknown. This study evaluates crosstalk between progenitor cells and macrophages during mechanical loading in ECM-mediated skeletal muscle repair. Myoblasts were exposed to solubilized ECM bioscaffolds and were mechanically loaded at 10% strain, 1 Hz for 5 h. Conditioned media was collected and applied to bone marrow-derived macrophages followed by immunolabeling for proinflammatory M1-like markers and proremodeling M2-like markers. Macrophages were subjected to the same loading protocol and their secreted products were collected for myoblast migration, proliferation, and differentiation analysis. A mouse hind limb unloading volumetric muscle loss model was used to evaluate the effect of loading upon the skeletal muscle microenvironment after ECM implantation. Animals were sacrificed at 14 or 180 days. Isometric torque production was tested and tissue sections were immunolabeled for macrophage phenotype and muscle fiber content. Results show that loading augments the ability of myoblasts to promote an M2-like macrophage phenotype following exposure to ECM bioscaffolds. Mechanically loaded macrophages promote myoblast chemotaxis and differentiation. Lack of weight bearing impaired muscle remodeling as indicated by Masson's Trichrome stain. Isometric torque was significantly increased following ECM implantation when compared to controls, a response not present in the hind limb-unloaded group. This work provides an important mechanistic insight of the effects of rehabilitation upon ECM-mediated remodeling and could have broader implications in clinical practice, advocating multidisciplinary approaches to regenerative medicine, emphasizing rehabilitation.


Asunto(s)
Matriz Extracelular , Músculo Esquelético/citología , Andamios del Tejido/química , Animales , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Macrófagos/citología , Ratones , Mioblastos/citología , Medicina Regenerativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...