Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 3: 1071, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23323214

RESUMEN

In E. coli, thiamine triphosphate (ThTP), a putative signaling molecule, transiently accumulates in response to amino acid starvation. This accumulation requires the presence of an energy substrate yielding pyruvate. Here we show that in intact bacteria ThTP is synthesized from free thiamine diphosphate (ThDP) and P(i), the reaction being energized by the proton-motive force (Δp) generated by the respiratory chain. ThTP production is suppressed in strains carrying mutations in F(1) or a deletion of the atp operon. Transformation with a plasmid encoding the whole atp operon fully restored ThTP production, highlighting the requirement for F(o)F(1)-ATP synthase in ThTP synthesis. Our results show that, under specific conditions of nutritional downshift, F(o)F(1)-ATP synthase catalyzes the synthesis of ThTP, rather than ATP, through a highly regulated process requiring pyruvate oxidation. Moreover, this chemiosmotic mechanism for ThTP production is conserved from E. coli to mammalian brain mitochondria.


Asunto(s)
Escherichia coli/metabolismo , ATPasas de Translocación de Protón/metabolismo , Tiamina Trifosfato/biosíntesis , Ciclo del Ácido Cítrico , Mutación , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/aislamiento & purificación , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo
2.
BMC Microbiol ; 10: 148, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20492686

RESUMEN

BACKGROUND: E. coli cells are rich in thiamine, most of it in the form of the cofactor thiamine diphosphate (ThDP). Free ThDP is the precursor for two triphosphorylated derivatives, thiamine triphosphate (ThTP) and the newly discovered adenosine thiamine triphosphate (AThTP). While, ThTP accumulation requires oxidation of a carbon source, AThTP slowly accumulates in response to carbon starvation, reaching approximately 15% of total thiamine. Here, we address the question whether AThTP accumulation in E. coli is triggered by the absence of a carbon source in the medium, the resulting drop in energy charge or other forms of metabolic stress. RESULTS: In minimal M9 medium, E. coli cells produce AThTP not only when energy substrates are lacking but also when their metabolization is inhibited. Thus AThTP accumulates in the presence of glucose, when glycolysis is blocked by iodoacetate, or in the presence lactate, when respiration is blocked by cyanide or anoxia. In both cases, ATP synthesis is impaired, but AThTP accumulation does not appear to be a direct consequence of reduced ATP levels. Indeed, in the CV2 E. coli strain (containing a thermolabile adenylate kinase), the ATP content is very low at 37 degrees C, even in the presence of metabolizable substrates (glucose or lactate) and under these conditions, the cells produce ThTP but not AThTP. Furthermore, we show that ThTP inhibits AThTP accumulation. Therefore, we conclude that a low energy charge is not sufficient to trigger AThTP accumulation and the latter can only accumulate under conditions where no ThTP is synthesized. We further show that AThTP production can also be induced by the uncoupler CCCP but, unexpectedly, this requires the presence of pyruvate or a substrate yielding pyruvate (such a D-glucose or L-lactate). Under the conditions described, AThTP production is not different when RelA or SpoT mutants are used. CONCLUSIONS: In E. coli, AThTP accumulates in response to two different conditions of metabolic stress: lack of energy substrates (or inhibition of their metabolization) and uncoupled pyruvate oxidation. Both conditions prevent bacterial growth. There is no obvious link with the stringent response or catabolite repression.


Asunto(s)
Adenosina Trifosfato/metabolismo , Escherichia coli/fisiología , Estrés Fisiológico , Tiamina Trifosfato/metabolismo , Adenosina Trifosfato/biosíntesis , Carbono/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Medios de Cultivo/química , Metabolismo Energético , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Glucosa/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Desacopladores/farmacología
3.
FEBS J ; 276(12): 3256-68, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19438713

RESUMEN

Thiamine and its three phosphorylated derivatives (mono-, di- and triphosphate) occur naturally in most cells. Recently, we reported the presence of a fourth thiamine derivative, adenosine thiamine triphosphate, produced in Escherichia coli in response to carbon starvation. Here, we show that the chemical synthesis of adenosine thiamine triphosphate leads to another new compound, adenosine thiamine diphosphate, as a side product. The structure of both compounds was confirmed by MS analysis and 1H-, 13C- and 31P-NMR, and some of their chemical properties were determined. Our results show an upfield shifting of the C-2 proton of the thiazolium ring in adenosine thiamine derivatives compared with conventional thiamine phosphate derivatives. This modification of the electronic environment of the C-2 proton might be explained by a through-space interaction with the adenosine moiety, suggesting U-shaped folding of adenosine thiamine derivatives. Such a structure in which the C-2 proton is embedded in a closed conformation can be located using molecular modeling as an energy minimum. In E. coli, adenosine thiamine triphosphate may account for 15% of the total thiamine under energy stress. It is less abundant in eukaryotic organisms, but is consistently found in mammalian tissues and some cell lines. Using HPLC, we show for the first time that adenosine thiamine diphosphate may also occur in small amounts in E. coli and in vertebrate liver. The discovery of two natural thiamine adenine compounds further highlights the complexity and diversity of thiamine biochemistry, which is not restricted to the cofactor role of thiamine diphosphate.


Asunto(s)
Adenina/análogos & derivados , Adenosina Difosfato/química , Adenosina Trifosfato/química , Tiamina Pirofosfato/química , Tiamina Trifosfato/química , Células 3T3 , Adenina/análisis , Adenina/síntesis química , Adenina/química , Adenosina Difosfato/análisis , Adenosina Difosfato/síntesis química , Adenosina Trifosfato/análisis , Adenosina Trifosfato/síntesis química , Animales , Química Encefálica , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Escherichia coli/química , Fibroblastos/química , Humanos , Riñón/química , Hígado/química , Espectroscopía de Resonancia Magnética , Ratones , Modelos Moleculares , Estructura Molecular , Músculo Esquelético/química , Miocardio/química , Codorniz , Espectrometría de Fluorescencia , Espectrometría de Masa por Ionización de Electrospray , Tiamina Pirofosfato/análisis , Tiamina Pirofosfato/síntesis química , Tiamina Trifosfato/análisis , Tiamina Trifosfato/síntesis química
4.
BMC Microbiol ; 8: 16, 2008 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-18215312

RESUMEN

BACKGROUND: Thiamine triphosphate (ThTP) exists in most organisms and might play a role in cellular stress responses. In E. coli, ThTP is accumulated in response to amino acid starvation but the mechanism of its synthesis is still a matter of controversy. It has been suggested that ThTP is synthesized by an ATP-dependent specific thiamine diphosphate kinase. However, it is also known that vertebrate adenylate kinase 1 catalyzes ThTP synthesis at a very low rate and it has been postulated that this enzyme is responsible for ThTP synthesis in vivo. RESULTS: Here we show that bacterial, as vertebrate adenylate kinases are able to catalyze ThTP synthesis, but at a rate more than 106-fold lower than ATP synthesis. This activity is too low to explain the high rate of ThTP accumulation observed in E. coli during amino acid starvation. Moreover, bacteria from the heat-sensitive CV2 strain accumulate high amounts of ThTP (>50% of total thiamine) at 37 degrees C despite complete inactivation of adenylate kinase and a subsequent drop in cellular ATP. CONCLUSION: These results clearly demonstrate that adenylate kinase is not responsible for ThTP synthesis in vivo. Furthermore, they show that E. coli accumulate large amounts of ThTP under severe energy stress when ATP levels are very low, an observation not in favor of an ATP-dependent mechanisms for ThTP synthesis.


Asunto(s)
Adenilato Quinasa/metabolismo , Metabolismo Energético , Escherichia coli/enzimología , Tiamina Trifosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/fisiología , Isoenzimas , Inanición
5.
Nat Chem Biol ; 3(4): 211-2, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17334376

RESUMEN

Several important cofactors are adenine nucleotides with a vitamin as the catalytic moiety. Here, we report the discovery of the first adenine nucleotide containing vitamin B1: adenosine thiamine triphosphate (AThTP, 1), or thiaminylated ATP. We discovered AThTP in Escherichia coli and found that it accumulates specifically in response to carbon starvation, thereby acting as a signal rather than a cofactor. We detected smaller amounts in yeast and in plant and animal tissues.


Asunto(s)
Adenosina Trifosfato/aislamiento & purificación , Escherichia coli/metabolismo , Tiamina Trifosfato/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Escherichia coli/crecimiento & desarrollo , Conformación Molecular , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...