Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Oncol ; 18(6): 1552-1570, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38348572

RESUMEN

Serine/threonine-protein kinase B-raf (BRAF) mutations are found in 8-15% of colorectal cancer patients and identify a subset of tumors with poor outcome in the metastatic setting. We have previously reported that BRAF-mutant human cells display a high rate of protein production, causing proteotoxic stress, and are selectively sensitive to the proteasome inhibitors bortezomib and carfilzomib. In this work, we tested whether carfilzomib could restrain the growth of BRAF-mutant colorectal tumors not only by targeting cancer cells directly, but also by promoting an immune-mediated antitumor response. In human and mouse colorectal cancer cells, carfilzomib triggered robust endoplasmic reticulum stress and autophagy, followed by the emission of immunogenic-damage-associated molecules. Intravenous administration of carfilzomib delayed the growth of BRAF-mutant murine tumors and mobilized the danger-signal proteins calreticulin and high mobility group box 1 (HMGB1). Analyses of drug-treated samples revealed increased intratumor recruitment of activated cytotoxic T cells and natural killers, concomitant with the downregulation of forkhead box protein P3 (Foxp3)+ T-cell surface glycoprotein CD4 (CD4)+ T cells, indicating that carfilzomib promotes reshaping of the immune microenvironment of BRAF-mutant murine colorectal tumors. These results will inform the design of clinical trials in BRAF-mutant colorectal cancer patients.


Asunto(s)
Neoplasias Colorrectales , Mutación , Oligopéptidos , Proteínas Proto-Oncogénicas B-raf , Animales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Proteínas Proto-Oncogénicas B-raf/genética , Humanos , Oligopéptidos/farmacología , Oligopéptidos/uso terapéutico , Ratones , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Autofagia/efectos de los fármacos , Ratones Endogámicos C57BL
2.
Mol Oncol ; 17(8): 1474-1491, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37183363

RESUMEN

The introduction of targeted therapies represented one of the most significant advances in the treatment of BRAFV600E melanoma. However, the onset of acquired resistance remains a challenge. Previously, we showed in mouse xenografts that vascular endothelial growth factor (VEGFA) removal enhanced the antitumor effect of BRAF inhibition through the recruitment of M1 macrophages. In this work, we explored the strategy of VEGFA/BRAF inhibition in immunocompetent melanoma murine models. In BRAF mutant D4M melanoma tumors, VEGFA/BRAF targeting reshaped the tumor microenvironment, largely by stimulating infiltration of M1 macrophages and CD8+ T cells, and sensitized tumors to immune checkpoint blockade (ICB). Furthermore, we reported that the association of VEGFA/BRAF targeting with anti-PD-1 antibody (triple therapy) resulted in a durable response and enabled complete tumor eradication in 50% of the mice, establishing immunological memory. Neutralization and CRISPR-Cas-mediated editing of granulocyte-macrophage colony-stimulating factor (GM-CSF) abrogated antitumor response prompted by triple therapy and identified GM-CSF as the cytokine instrumental in M1-macrophage recruitment. Our data suggest that VEGFA/BRAF targeting in melanoma induces the activation of innate and adaptive immunity and prepares tumors for ICB. Our study contributes to understanding the tumor biology of BRAFV600E melanoma and suggests VEGFA as therapeutic target.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Melanoma , Humanos , Animales , Ratones , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Linfocitos T CD8-positivos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Melanoma/metabolismo , Macrófagos/metabolismo , Microambiente Tumoral
3.
Cancers (Basel) ; 13(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066159

RESUMEN

BACKGROUND: Malignant pleural mesothelioma (MPM) is a highly aggressive cancer generally diagnosed at an advanced stage and characterized by a poor prognosis. The absence of alterations in druggable kinases, together with an immune-suppressive tumor microenvironment, limits the use of molecular targeted therapies, making the treatment of MPM particularly challenging. Here we investigated the in vitro susceptibility of MPM to lurbinectedin (PM01183), a marine-derived drug that recently received accelerated approval by the FDA for the treatment of patients with metastatic small cell lung cancer with disease progression on or after platinum-based chemotherapy. METHODS: A panel of primary MPM cultures, resembling the three major MPM histological subtypes (epithelioid, sarcomatoid, and biphasic), was characterized in terms of BAP1 status and histological markers. Subsequently, we explored the effects of lurbinectedin at nanomolar concentration on cell cycle, cell viability, DNA damage, genotoxic stress response, and proliferation. RESULTS: Stabilized MPM cultures exhibited high sensitivity to lurbinectedin independently from the BAP1 mutational status and histological classification. Specifically, we observed that lurbinectedin rapidly promoted a cell cycle arrest in the S-phase and the activation of the DNA damage response, two conditions that invariably resulted in an irreversible DNA fragmentation, together with strong apoptotic cell death. Moreover, the analysis of long-term treatment indicated that lurbinectedin severely impacts MPM transforming abilities in vitro. CONCLUSION: Overall, our data provide evidence that lurbinectedin exerts a potent antitumoral activity on primary MPM cells, independently from both the histological subtype and BAP1 alteration, suggesting its potential activity in the treatment of MPM patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...