Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Oncotarget ; 9(40): 26019-26031, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29899839

RESUMEN

PI3Kδ (idelalisib) and BTK (ibrutinib) inhibitors have demonstrated significant clinical activity in chronic lymphocytic leukemia (CLL) interfering with the cross-talk between CLL cells and the lymph node microenviroment, yet their mechanism of action remains to be fully elucidated. Here, we developed an ex vivo model with the aim of reproducing the effects of the microenvironment that would help shed light on the in vivo mechanism of action of idelalisib and ibrutinib and predict their clinical efficacy in individual patients. First we explored the effects of various cell-extrinsic elements on CLL apoptosis and proliferation and found that the combination of CpG+IL2+HS5 stromal cell line + human serum +CLL plasma and erythrocyte fractions represented the best co-culture conditions to test the effects of the novel inhibitors. Then, using this assay, we investigated the impact of idelalisib and ibrutinib on both survival and proliferation in 30 CLL patients. While both drugs had a limited direct pro-apoptotic activity, a potent inhibition of proliferation was achieved at clinically achievable concentrations. Notably, up to 10% of CLL cells still proliferated even at the highest concentrations, likely mirroring the known difficulty to achieve complete responses in vivo. Altogether, this novel assay represents an appropriate ex vivo drug testing system to potentially predict the clinical response to novel inhibitors in particular by quantifying the antiproliferative effect.

3.
Oncotarget ; 8(19): 31959-31976, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28404876

RESUMEN

Acute myeloid leukemia (AML) is a disease with great morphological and genetic heterogeneity, which complicates its prognosis and treatment. The hypomethylating agents azacitidine (Vidaza®, AZA) and decitabine (Dacogen®, DAC) have been approved for the treatment of AML patients, but their mechanisms of action are poorly understood. Natural killer (NK) cells play an important role in the recognition of AML blasts through the interaction of the activating NKG2D receptor with its ligands (NKG2DL: MICA/B and ULBPs1-3). However, soluble NKG2DL (sNKG2DL) can be released from the cell surface, impairing immune recognition. Here, we examined whether hypomethylating agents modulate the release of sNKG2DL from AML cells. Results demonstrated that AZA- and DAC-treated AML cells reduce the release of sNKG2DL, preventing downregulation of NKG2D receptor on the cell surface and promoting immune recognition mediated by NKG2D-NKG2DL engagement. We show that the shedding of MICA, MICB and ULBP2 is inhibited by the increased expression of TIMP3, an ADAM17 inhibitor, after DAC treatment. The TIMP3 gene is highly methylated in AML cells lines and in AML patients (25.5%), in which it is significantly associated with an adverse cytogenetic prognosis of the disease. Overall, TIMP3 could be a target of the demethylating treatments in AML patients, leading to a decrease in MICA, MICB and ULBP2 shedding and the enhancement of the lytic activity of NK cells through the immune recognition mediated by the NKG2D receptor.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Antígenos de Histocompatibilidad Clase I/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Inhibidor Tisular de Metaloproteinasa-3/genética , Proteína ADAM17/metabolismo , Adulto , Anciano , Azacitidina/análogos & derivados , Azacitidina/farmacología , Azacitidina/uso terapéutico , Línea Celular Tumoral , Aberraciones Cromosómicas , Decitabina , Femenino , Proteínas Ligadas a GPI/metabolismo , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/inmunología , Masculino , Persona de Mediana Edad , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...