Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(10): e21030, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37916071

RESUMEN

Current cancer chemotherapy is associated with many side effects and, in some cases, drug resistance, which makes the search for new active molecules and drug delivery strategies imperative. Carbamazepine is an antiepileptic compound that has shown efficacy against breast cancer cell lines. In this study, it was incorporated into layered double hydroxide nanoclays, the percentage of drug loading was increased compared to previous research, and the clays were impregnated with magnetic Fe3O4 nanoparticles. The goal of the magnetic Fe3O4-impregnation was to direct the nanocomposites to the therapeutic target with an external magnetic field. The nanoclay-carbamazepine composites had a carbamazepine loading of 51 %, and the nanoclay-carbamazepine-nanoparticles had a drug loading of 13 % due to the addition of more ingredients. The structure of the composites was analyzed by X-ray diffraction and Scherrer equation, showing a layered double hydroxide organization with crystal sizes of 9-15 nm; from transmission electron microscopy, the final compounds showed a particle size of 97-158 nm, small enough for systemic circulation. In vibrating sample magnetization studies, the composites showed a superparamagnetic behavior with high magnetic saturation (9-17 emu/gr), which should allow a good material attraction by an external magnetic field located near the tumor. In vitro drug release studies were done in Franz cells and measured by UV/Vis spectrophotometry; they showed that carbamazepine release from the nanocomposites responds to the media pH: a good drug release at the lysosome pH and slow release at the blood pH. Finally, the efficacy was tested in vitro in MDA-MB-231 breast cancer cells, and the composites showed an enhanced efficacy in comparison with that produced by the free drug (96 % and 62 % of cell inhibition respectively). Carbamazepine administered with magnetic clays as a carrier is a promising treatment for breast cancer, and further studies should be done to measure the arrival time and the efficacy in vivo.

2.
Oxid Med Cell Longev ; 2021: 4420479, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567408

RESUMEN

Coffee consumption has been investigated as a protective factor against cancer. Coffee is a complex beverage that contains more than 1000 described phytochemicals, which are responsible for its pleasant taste, aroma, and health-promoting properties. Many of these compounds have a potential therapeutic effect due to their antioxidant, anti-inflammatory, antifibrotic, and anticancer properties. The roasting process affects the phytochemical content, and undesirable compounds may be formed. In recent years, there have been contradictory publications regarding the effect of coffee drinking and cancer. Therefore, this study is aimed at evaluating the association of coffee consumption with the development of cancer. In PubMed, until July 2021, the terms "Coffee and cancer" resulted in about 2150 publications, and almost 50% of them have been published in the last 10 years. In general, studies published in recent years have shown negative associations between coffee consumption and the risk or development of different types of cancer, including breast, prostate, oral, oral and pharyngeal, melanoma, skin and skin nonmelanoma, kidney, gastric, colorectal, endometrial, liver, leukemic and hepatocellular carcinoma, brain, and thyroid cancer, among others. In contrast, only a few publications demonstrated a double association between coffee consumption and bladder, pancreatic, and lung cancer. In this review, we summarize the in vitro and in vivo studies that accumulate epidemiological evidence showing a consistent inverse association between coffee consumption and cancer.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Café/química , Neoplasias/prevención & control , Fitoquímicos/farmacología , Bebidas , Humanos , Neoplasias/patología
3.
Oxid Med Cell Longev ; 2021: 5572630, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113419

RESUMEN

Coffee consumption is believed to have chemopreventive and chemotherapeutic effects and to contribute to preventing the development and progression of cancer. However, there is still controversy around these claims. As indicated in our previous works, diet can influence the risk of breast cancer. Intake of coffee is hypothesized to reduce this risk, but current scientific evidence is not conclusive. This work is aimed at studying the effects of Robusta coffee bean extract on cell viability, proliferation, and apoptosis of different human cancers, especially breast cancer cell lines. To this end, cell viability was evaluated by Alamar Blue in 2D and 3D models, the cell cycle by PI, apoptosis by annexin V, mitochondrial morphology, and functionality by mitoTracker, and colony formation capacity by the clonogenic assay. Green and dark coffee extract significantly reduced viability in human breast, colorectal, brain, and bone cancer cells. Coffee anticancer activity was clearly evidenced in MDA-MB-231 (ER-) and MCF-7 (ER+) breast cancer cells but not in the normal breast cell line. In addition, coffee extract induces an increase S phase and a decrease G2/M population in breast cancer cells, affected the mitochondrial morphology, and triggered apoptosis. MDA-MB-231 breast cancer cells lost their clonogenic capacity after treatment. The antitumor activity was demonstrated in both 2D and 3D culture cell models.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Coffea/química , Café/química , Extractos Vegetales/uso terapéutico , Apoptosis , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Femenino , Humanos
4.
Clin Cancer Res ; 25(13): 4049-4062, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30890549

RESUMEN

PURPOSE: BRCA1 and BRCA2 deficiencies are widespread drivers of human cancers that await the development of targeted therapies. We aimed to identify novel synthetic lethal relationships with therapeutic potential using BRCA-deficient isogenic backgrounds. EXPERIMENTAL DESIGN: We developed a phenotypic screening technology to simultaneously search for synthetic lethal (SL) interactions in BRCA1- and BRCA2-deficient contexts. For validation, we developed chimeric spheroids and a dual-tumor xenograft model that allowed the confirmation of SL induction with the concomitant evaluation of undesired cytotoxicity on BRCA-proficient cells. To extend our results using clinical data, we performed retrospective analysis on The Cancer Genome Atlas (TCGA) breast cancer database. RESULTS: The screening of a kinase inhibitors library revealed that Polo-like kinase 1 (PLK1) inhibition triggers strong SL induction in BRCA1-deficient cells. Mechanistically, we found no connection between the SL induced by PLK1 inhibition and PARP inhibitors. Instead, we uncovered that BRCA1 downregulation and PLK1 inhibition lead to aberrant mitotic phenotypes with altered centrosomal duplication and cytokinesis, which severely reduced the clonogenic potential of these cells. The penetrance of PLK1/BRCA1 SL interaction was validated using several isogenic and nonisogenic cellular models, chimeric spheroids, and mice xenografts. Moreover, bioinformatic analysis revealed high-PLK1 expression in BRCA1-deficient tumors, a phenotype that was consistently recapitulated by inducing BRCA1 deficiency in multiple cell lines as well as in BRCA1-mutant cells. CONCLUSIONS: We uncovered an unforeseen addiction of BRCA1-deficient cancer cells to PLK1 expression, which provides a new means to exploit the therapeutic potential of PLK1 inhibitors in clinical trials, by generating stratification schemes that consider this molecular trait in patient cohorts.


Asunto(s)
Proteína BRCA1/deficiencia , Proteínas de Ciclo Celular/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Mutaciones Letales Sintéticas/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteína BRCA2/deficiencia , Proteína BRCA2/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Células Cultivadas , Aberraciones Cromosómicas , Daño del ADN , Modelos Animales de Enfermedad , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasa Tipo Polo 1
5.
Cancers (Basel) ; 11(2)2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30736340

RESUMEN

Antiestrogenic adjuvant treatments are first-line therapies in patients with breast cancer positive for estrogen receptor (ER+). Improvement of their treatment strategies is needed because most patients eventually acquire endocrine resistance and many others are initially refractory to anti-estrogen treatments. The tumor microenvironment plays essential roles in cancer development and progress; however, the molecular mechanisms underlying such effects remain poorly understood. Breast cancer cell lines co-cultured with TNF-α-conditioned macrophages were used as pro-inflammatory tumor microenvironment models. Proliferation, migration, and colony formation assays were performed to evaluate tamoxifen and ICI 182,780 resistance and confirmed in a mouse-xenograft model. Molecular mechanisms were investigated using cytokine antibody arrays, WB, ELISA, ChIP, siRNA, and qPCR-assays. In our simulated pro-inflammatory tumor microenvironment, tumor-associated macrophages promoted proliferation, migration, invasiveness, and breast tumor growth of ER+ cells, rendering these estrogen-dependent breast cancer cells resistant to estrogen withdrawal and tamoxifen or ICI 182,780 treatment. Crosstalk between breast cancer cells and conditioned macrophages induced sustained release of pro-inflammatory cytokines from both cell types, activation of NF-κB/STAT3/ERK in the cancer cells and hyperphosphorylation of ERα, which resulted constitutively active. Our simulated tumor microenvironment strongly altered endocrine and inflammatory signaling pathways in breast cancer cells, leading to endocrine resistance in these cells.

6.
BMC Cancer ; 15: 761, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26493452

RESUMEN

BACKGROUND: Microcalcifications can be the early and only presenting sign of breast cancer. One shared characteristic of breast cancer is the appearance of mammographic mammary microcalcifications that can routinely be used to detect breast cancer in its initial stages, which is of key importance due to the possibility that early detection allows the application of more conservative therapies for a better patient outcome. The mechanism by which mammary microcalcifications are formed is still largely unknown but breast cancers presenting microcalcifications are more often associated with a poorer prognosis. METHODS: We combined Capillary Electrochromatography, histology, and gene expression (qRT-PCR) to analyze patient-matched normal breast tissue vs. breast tumor. Potential carcinogenicity of oxalate was tested by its inoculation into mice. All data were subjected to statistical analysis. RESULTS: To study the biological significance of oxalates within the breast tumor microenvironment, we measured oxalate concentration in both human breast tumor tissues and adjoining non-pathological breast tissues. We found that all tested breast tumor tissues contain a higher concentration of oxalates than their counterpart non-pathological breast tissue. Moreover, it was established that oxalate induces proliferation of breast cells and stimulates the expression of a pro-tumorigenic gene c-fos. Furthermore, oxalate generates highly malignant and undifferentiated tumors when it was injected into the mammary fatpad in female mice, but not when injected into their back, indicating that oxalate does not induce cancer formation in all types of tissues. Moreover, neither human kidney-epithelial cells nor mouse fibroblast cells proliferate when are treated with oxalate. CONCLUSIONS: We found that the chronic exposure of breast epithelial cells to oxalate promotes the transformation of breast cells from normal to tumor cells, inducing the expression of a proto-oncogen as c-fos and proliferation in breast cancer cells. Furthermore, oxalate has a carcinogenic effect when injected into the mammary fatpad in mice, generating highly malignant and undifferentiated tumors with the characteristics of fibrosarcomas of the breast. As oxalates seem to promote these differences, it is expected that a significant reduction in the incidence of breast cancer tumors could be reached if it were possible to control oxalate production or its carcinogenic activity.


Asunto(s)
Neoplasias de la Mama/etiología , Calcinosis/complicaciones , Glándulas Mamarias Humanas/patología , Neoplasias Mamarias Animales/patología , Neoplasias Experimentales , Oxalatos/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Calcinosis/metabolismo , Calcinosis/patología , Línea Celular Tumoral , Transformación Celular Neoplásica , Femenino , Humanos , Glándulas Mamarias Humanas/metabolismo , Neoplasias Mamarias Animales/metabolismo , Ratones , Ratones Endogámicos BALB C , Pronóstico
7.
Biochim Biophys Acta ; 1841(9): 1241-6, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24886961

RESUMEN

The mechanisms that co-ordinately activate lipid synthesis when high rates of membrane biogenesis are needed to support cell growth are largely unknown. c-Fos, a well known AP-1 transcription factor, has emerged as a unique protein with the capacity to associate to specific enzymes of the pathway of synthesis of phospholipids at the endoplasmic reticulum and activate their synthesis to accompany genomic decisions of growth. Herein, we discuss this cytoplasmic, non-genomic effect of c-Fos in the context of other mechanisms that have been proposed to regulate lipid synthesis.


Asunto(s)
Retículo Endoplásmico/metabolismo , Células Eucariotas/metabolismo , Fosfolípidos/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Proto-Oncogénicas c-fos/genética , Animales , Ciclo Celular , Proliferación Celular , Células Eucariotas/citología , Regulación de la Expresión Génica , Humanos , Metabolismo de los Lípidos , Antígenos de Histocompatibilidad Menor , Fosfolípidos/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transducción de Señal
8.
Biochem J ; 461(3): 521-30, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24819416

RESUMEN

c-Fos is a well-recognized member of the AP-1 (activator protein-1) family of transcription factors. In addition to this canonical activity, we previously showed that cytoplasmic c-Fos activates phospholipid synthesis through a mechanism independent of its genomic AP-1 activity. c-Fos associates with particular enzymes of the lipid synthesis pathway at the endoplasmic reticulum and increases the Vmax of the reactions without modifying the Km values. This lipid synthesis activation is associated with events of differentiation and proliferation that require high rates of membrane biogenesis. Since lipid synthesis also occurs in the nucleus, and different phospholipids have been assigned transcription regulatory functions, in the present study we examine if c-Fos also acts as a regulator of phospholipid synthesis in the nucleus. Furthermore, we examine if c-Fos modulates transcription through its phospholipid synthesis activator capacity. We show that nuclear-localized c-Fos associates with and activates PI4P5K (phosphatidylinositol-4-monophosphate 5-kinase), but not with PI4KIIIß (type IIIß phosphatidylinositol 4-kinase) thus promoting PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) formation, which, in turn, promotes transcriptional changes. We propose c-Fos as a key regulator of nuclear PtdIns(4,5)P2 synthesis in response to growth signals that results in c-Fos-dependent transcriptional changes promoted by the newly synthesized lipids.


Asunto(s)
Núcleo Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transcripción Genética , Regulación hacia Arriba , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/enzimología , Núcleo Celular/ultraestructura , Tamaño del Núcleo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Células 3T3 NIH , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
9.
Neurochem Res ; 37(6): 1364-71, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22476983

RESUMEN

Some 20 years ago c-Fos was identified as a member of the AP-1 family of inducible transcription factors (Angel and Karin in Biochim Biophys Acta 1072:129-157, 1991). More recently, an additional activity was described for this protein: it associates to the endoplasmic reticulum and activates the biosynthesis of phospholipids (Bussolino et al. in FASEB J 15:556-558, 2001), (Gil et al. in Mol Biol Cell 15:1881-1894, 2004), the quantitatively most important components of cellular membranes. This latter activity of c-Fos determines the rate of membrane genesis and consequently of growth in differentiating PC12 cells (Gil et al. in Mol Biol Cell 15:1881-1894, 2004). In addition, it has been shown that c-Fos is over-expressed both in PNS and CNS tumors (Silvestre et al. in PLoS One 5(3):e9544, 2010). Herein, it is shown that c-Fos-activated phospholipid synthesis is required to support membrane genesis during the exacerbated growth characteristic of brain tumor cells. Specifically blocking c-Fos-activated phospholipid synthesis significantly reduces proliferation of tumor cells in culture. Blocking c-Fos expression also prevents tumor progression in mice intra-cranially xeno-grafted human brain tumor cells. In NPcis mice, an animal model of the human disease Neurofibromatosis Type I (Cichowski and Jacks in Cell 104:593-604, 2001), animals spontaneously develop tumors of the PNS and the CNS, provided they express c-Fos (Silvestre et al. in PLoS One 5(3):e9544, 2010). Treatment of PNS tumors with an antisense oligonucleotide that specifically blocks c-Fos expression also blocks tumor growth in vivo. These results disclose cytoplasmic c-Fos as a new target for effectively controlling brain tumor growth.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Neoplasias del Sistema Nervioso Central/patología , Neoplasias del Sistema Nervioso Periférico/patología , Fosfolípidos/biosíntesis , Proteínas Proto-Oncogénicas c-fos/metabolismo , Animales , Línea Celular Tumoral , Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Ratones , Oligonucleótidos Antisentido/metabolismo , Células PC12 , Neoplasias del Sistema Nervioso Periférico/metabolismo , Ratas
10.
PLoS One ; 5(3): e9544, 2010 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-20209053

RESUMEN

BACKGROUND: We have previously shown that the transcription factor c-Fos is also capable of associating to endoplasmic reticulum membranes (ER) and activating phospholipid synthesis. Herein we examined phospholipid synthesis status in brain tumors from human patients and from NPcis mice, an animal model of the human disease Neurofibromatosis Type 1 (NF1). PRINCIPAL FINDINGS: In human samples, c-Fos expression was at the limit of detection in non-pathological specimens, but was abundantly expressed associated to ER membranes in tumor cells. This was also observed in CNS of adult tumor-bearing NPcis mice but not in NPcis fos(-/-) KO mice. A glioblastoma multiforme and a malignant PNS tumor from a NF1 patient (MPNST) showed a 2- and 4- fold c-Fos-dependent phospholipid synthesis activation, respectively. MPNST samples also showed increased cell proliferation rates and abundant c-Fos expression. CONCLUSIONS: Results highlight a role of cytoplasmic c-Fos as an activator of phospholipid synthesis in events demanding high rates of membrane biogenesis as occurs for the exacerbated growth of tumors cells. They also disclose this protein as a potential target for controlling tumor growth in the nervous system.


Asunto(s)
Neoplasias del Sistema Nervioso Central/patología , Citoplasma/metabolismo , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Animales , Encéfalo/metabolismo , Encéfalo/patología , Proliferación Celular , Neoplasias del Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Genotipo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurofibromatosis 1/metabolismo , Fosforilación
11.
J Biol Chem ; 283(45): 31163-71, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18784083

RESUMEN

It has been demonstrated that c-Fos has, in addition to its well recognized AP-1 transcription factor activity, the capacity to associate to the endoplasmic reticulum and activate key enzymes involved in the synthesis of phospholipids required for membrane biogenesis during cell growth and neurite formation. Because membrane genesis requires the coordinated supply of all its integral membrane components, the question emerges as to whether c-Fos also activates the synthesis of glycolipids, another ubiquitous membrane component. We show that c-Fos activates the metabolic labeling of glycolipids in differentiating PC12 cells. Specifically, c-Fos activates the enzyme glucosylceramide synthase (GlcCerS), the product of which, GlcCer, is the first glycosylated intermediate in the pathway of synthesis of glycolipids. By contrast, the activities of GlcCer galactosyltransferase 1 and lactosylceramide sialyltransferase 1 are essentially unaffected by c-Fos. Co-immunoprecipitation experiments in cells co-transfected with c-Fos and a V5-tagged version of GlcCerS evidenced that both proteins participate in a physical association. c-Fos expression is tightly regulated by specific environmental cues. This strict regulation assures that lipid metabolism activation will occur as a response to cell requirements thus pointing to c-Fos as an important regulator of key membrane metabolisms in membrane biogenesis-demanding processes.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Glucosiltransferasas/metabolismo , Glucolípidos/biosíntesis , Neuritas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Animales , Diferenciación Celular/fisiología , Activación Enzimática/fisiología , Células PC12 , Fosfolípidos/biosíntesis , Unión Proteica/fisiología , Ratas , Factor de Transcripción AP-1/metabolismo
12.
Mol Biol Cell ; 15(4): 1881-94, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14767061

RESUMEN

We have previously shown that c-Fos activates phospholipid synthesis through a mechanism independent of its genomic AP-1 activity. Herein, using PC12 cells induced to differentiate by nerve growth factor, the genomic effect of c-Fos in initiating neurite outgrowth is shown as distinct from its nongenomic effect of activating phospholipid synthesis and sustaining neurite elongation. Blocking c-Fos expression inhibited differentiation, phospholipid synthesis activation, and neuritogenesis. In cells primed to grow, blocking c-Fos expression determined neurite retraction. However, transfected cells expressing c-Fos or c-Fos deletion mutants with capacity to activate phospholipid synthesis sustain neurite outgrowth and elongation in the absence of nerve growth factor. Results disclose a dual function of c-Fos: it first releases the genomic program for differentiation and then associates to the endoplasmic reticulum and activates phospholipid synthesis. Because phospholipids are key membrane components, we hypothesize this latter phenomenon as crucial to support membrane genesis demands required for cell growth and neurite elongation.


Asunto(s)
Neuronas/metabolismo , Fosfolípidos/metabolismo , Proteínas Proto-Oncogénicas c-fos/fisiología , Animales , Western Blotting , Diferenciación Celular , División Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Eliminación de Gen , Microscopía Fluorescente , Mutación , Células PC12 , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , ARN Mensajero/metabolismo , Ratas , Proteínas Recombinantes/química , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...