Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Control Release ; 267: 119-132, 2017 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-28412223

RESUMEN

Biological drugs are exquisitely tailored components offering the advantages of high specificity and efficacy that are considered safe for treating diseases. Nevertheless, the effectiveness of biological drugs is limited by their inherent short biological half-life and poor stability in vivo. Herein, we engineered a novel delivery platform based on hybrid injectable hydrogels, in which pH- and temperature-responsive biodegradable copolymers were site-specifically coupled to the sulfhydryl group of human serum albumin, which effectively enhances the stability and circulation half-life of the biological drug, recombinant uricase enzyme (Uox). The albumin ligand conjugated to the Uox allowed specific-binding of the enzyme within the protein shell, and the synthetic polymers effectively shield the protein-enzyme complex. Such close confinement exhibits strong resistance towards various physical, chemical and therapeutically relevant stressors such as temperature, pH and proteases. Subcutaneous administration of Uox-loaded bioengineered hybrid hydrogel improved the pharmacokinetics by prolonging its circulation half-life. As a consequence, the bioengineered hybrid hydrogel normalized the serum uric acid level in hypoxanthine/potassium oxonate-induced hyperuricemia mice, and no obvious side effects were observed in the major organs. The characteristic of the bioengineered hydrogel networks applicable to a variety of biological drugs by simple mixing that unlock the possibility of adapting biological drugs to therapeutic applications.


Asunto(s)
Productos Biológicos/administración & dosificación , Hidrogeles/administración & dosificación , Urato Oxidasa/administración & dosificación , Animales , Bioingeniería , Productos Biológicos/química , Productos Biológicos/farmacocinética , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Estabilidad de Medicamentos , Femenino , Células HEK293 , Humanos , Hidrogeles/química , Hidrogeles/farmacocinética , Hiperuricemia/sangre , Hiperuricemia/tratamiento farmacológico , Masculino , Ratones Endogámicos C57BL , Ácido Palmítico/química , Polímeros , Ratas Sprague-Dawley , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Resultado del Tratamiento , Urato Oxidasa/genética , Urato Oxidasa/farmacocinética , Ácido Úrico/sangre
2.
J Mater Chem B ; 5(34): 7140-7152, 2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32263905

RESUMEN

Cisplatin (CDDP) is a well-known anticancer agent, and it has been widely used to treat various solid tumors during clinical cancer therapy. Nevertheless, therapeutic applications of CDDP are hampered by its severe side effects. Although CDDP can be encapsulated into nano-scale drug delivery formulations to improve its physicochemical properties, the lack of stability in the formulation and cancer cell-specific targetability have prompted the exploration of novel vectors for the targeted delivery of CDDP. Here, we introduce CDDP-bearing chondroitin sulfate nanogels (CS-nanogels) that are synthesized through a chelating ligand-metal coordination cross-linking reaction, and then incorporated into pH- and temperature-responsive bioresorbable poly(ethylene glycol)-poly(ß-aminoester urethane) (PEG-PAEU) hydrogels for cancer cell-specific delivery of CDDP. The CS-nanogels released from the hydrogels exhibit a pH-dependent release of CDDP. CDDP was released slowly under physiological conditions (pH 7.4), whereas the release of CDDP was triggered under acidic conditions (pH 5.0). Confocal microscopy images demonstrated that fluorescein-5-thiosemicarbazide-labeled CS-nanogels released from the hydrogels selectively bound to the A549 lung carcinoma cell line through the overexpressing CD44 receptor but not to NIH 3T3 cells. An in vitro cytotoxicity test indicated that CS-nanogels released from the hydrogels effectively inhibited the growth of A549 lung carcinoma cells. Subcutaneous injection of CS-nanogel-loaded PEG-PAEU copolymer sols into the dorsal region of Sprague-Dawley rats spontaneously formed a viscoelastic gel without causing noticeable inflammation at the injection site and was found to be bioresorbable in eight weeks. Overall, the injectable hydrogel-incorporated CS-nanogels were demonstrated to be a useful formulation for the targeted delivery of CDDP.

3.
Med Phys ; 42(5): 2626-37, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25979054

RESUMEN

PURPOSE: The aim of this study is to investigate the use of mixture of BaSO4 and biodegradable polymer as an injectable nonmetallic fiducial marker to reduce artifacts in x-ray images, decrease the absorbed dose distortion in proton therapy, and replace permanent metal markers. METHODS: Two samples were made with 90 wt. % polymer phosphate buffer saline (PBS) and 10 wt. % BaSO4 (B1) or 20 wt. % BaSO4 (B2). Two animal models (mice and rats) were used. To test the injectability and in vivo gelation, a volume of 200 µl at a pH 5.8 were injected into the Sprague-Dawley rats. After sacrificing the rats over time, the authors checked the gel morphology. Detectability of the markers in the x-ray images was tested for two sizes (diameters of 1 and 2 mm) for B1 and B2. Four samples were injected into BALB/C mice. The polymer mixed with BaSO4 transform from SOL at 20 °C with a pH of 6.0 to GEL in the living body at 37 °C with a pH of 7.4, so the size of the fiducial marker could be controlled by adjusting the injected volume. The detectability of the BaSO4 marker was measured in x-ray images of cone beam CT (CBCT), on-board imager [anterior-posterior (AP), lateral], and fluoroscopy (AP, lateral) using a Novalis-TX (Varian Medical Systems, Palo Alto, CA) repeatedly over 4 months. The volume, HU, and artifacts for the markers were measured in the CBCT images. Artifacts were compared to those of gold marker by analyzing the HU distribution. The dose distortion in proton therapy was computed by using a Monte Carlo (MC) code. A cylindrical shaped marker (diameter: 1 or 2 mm, length: 3 mm) made of gold, stainless-steel [304], titanium, and 20 wt. % BaSO4 was positioned at the center of the spread-out Bragg peak (SOBP) in parallel or perpendicular to the beam entrance. The dose distortion was measured on the depth dose profile across the markers. RESULTS: Transformation to GEL and the biodegradation were verified. All BaSO4 markers could be detected in the CBCT. In the OBI and fluoroscopy images, all markers visible in the AP, but only B2(2 mm) could be identified in the lateral images. Changes of BaSO4 position were not detected in vivo (mice). The volume of the markers decreased by up to 65% and the HU increased by 22%, on average. The mean HU values around the B1, B2, and gold markers were 121.30 [standard deviation (SD): 54.86], 126.31 (SD: 62.13), and 1070.7 (SD: 235.16), respectively. The MC-simulated dose distortion for the BaSO4 markers was less than that of the commercially used markers. The dose reduction due to the gold marker was largest (15.05%) followed by stainless steel (7.92%) and titanium (6.92%). Dose reduction by B2 (2 mm) was 4.75% and 0.53% in parallel and perpendicular orientations, respectively. CONCLUSIONS: BaSO4 mixed with PBS is a good contrast agent in biodegradable polymer marker because of minimal artifacts in x-ray images and minimal dose reduction in proton therapy. The flexibility of the size is considered to be an advantage of this material over solid type fiducials.


Asunto(s)
Sulfato de Bario , Plásticos Biodegradables , Marcadores Fiduciales , Polímeros , Terapia de Protones/métodos , Animales , Artefactos , Simulación por Computador , Tomografía Computarizada de Haz Cónico/instrumentación , Tomografía Computarizada de Haz Cónico/métodos , Fluoroscopía/instrumentación , Fluoroscopía/métodos , Geles , Compuestos de Oro , Concentración de Iones de Hidrógeno , Masculino , Ratones Endogámicos BALB C , Modelos Animales , Método de Montecarlo , Fantasmas de Imagen , Dosis de Radiación , Ratas Sprague-Dawley , Acero Inoxidable , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...