Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Int J Obes (Lond) ; 48(4): 557-566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38148333

RESUMEN

BACKGROUND: In obesity, adipose tissue undergoes a remodeling process characterized by increased adipocyte size (hypertrophia) and number (hyperplasia). The ability to tip the balance toward the hyperplastic growth, with recruitment of new fat cells through adipogenesis, seems to be critical for a healthy adipose tissue expansion, as opposed to a hypertrophic growth that is accompanied by the development of inflammation and metabolic dysfunction. However, the molecular mechanisms underlying the fine-tuned regulation of adipose tissue expansion are far from being understood. METHODS: We analyzed by mass spectrometry-based proteomics visceral white adipose tissue (vWAT) samples collected from C57BL6 mice fed with a HFD for 8 weeks. A subset of these mice, called low inflammation (Low-INFL), showed reduced adipose tissue inflammation, as opposed to those developing the expected inflammatory response (Hi-INFL). We identified the discriminants between Low-INFL and Hi-INFL vWAT samples and explored their function in Adipose-Derived human Mesenchymal Stem Cells (AD-hMSCs) differentiated to adipocytes. RESULTS: vWAT proteomics allowed us to quantify 6051 proteins. Among the candidates that most differentiate Low-INFL from Hi-INFL vWAT, we found proteins involved in adipocyte function, including adiponectin and hormone sensitive lipase, suggesting that adipocyte differentiation is enhanced in Low-INFL, as compared to Hi-INFL. The chromatin modifier SET and MYND Domain Containing 3 (SMYD3), whose function in adipose tissue was so far unknown, was another top-scored hit. SMYD3 expression was significantly higher in Low-INFL vWAT, as confirmed by western blot analysis. Using AD-hMSCs in culture, we found that SMYD3 mRNA and protein levels decrease rapidly during the adipocyte differentiation. Moreover, SMYD3 knock-down before adipocyte differentiation resulted in reduced H3K4me3 and decreased cell proliferation, thus limiting the number of cells available for adipogenesis. CONCLUSIONS: Our study describes an important role of SMYD3 as a newly discovered regulator of adipocyte precursor proliferation during the early steps of adipogenesis.


Asunto(s)
Adipocitos , Adipogénesis , Animales , Humanos , Ratones , Adipocitos/metabolismo , Adipogénesis/fisiología , Tejido Adiposo Blanco/metabolismo , Diferenciación Celular/genética , Proliferación Celular , N-Metiltransferasa de Histona-Lisina/metabolismo , Hipertrofia/metabolismo , Inflamación/metabolismo , Ratones Endogámicos C57BL , Obesidad
2.
Toxicology ; 500: 153672, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37956786

RESUMEN

Human lifetime exposure to arsenic through drinking water, food supply or industrial pollution leads to its accumulation in many organs such as liver, kidneys, lungs or pancreas but also adipose tissue. Recently, population-based studies revealed the association between arsenic exposure and the development of metabolic diseases such as obesity and type 2 diabetes. To shed light on the molecular bases of such association, we determined the concentration that inhibited 17% of cell viability and investigated the effects of arsenic acute exposure on adipose-derived human mesenchymal stem cells differentiated in vitro into mature adipocytes and treated with sodium arsenite (NaAsO2, 10 nM to 10 µM). Untargeted metabolomics and gene expression analyses revealed a strong dose-dependent inhibition of lipogenesis and lipolysis induction, reducing the cellular ability to store lipids. These dysregulations were emphasized by the inhibition of the cellular response to insulin, as shown by the perturbation of several genes and metabolites involved in the mentioned biological pathways. Our study highlighted the activation of an adaptive oxidative stress response with the strong induction of metallothioneins and increased glutathione levels in response to arsenic accumulation that could exacerbate the decreased insulin sensitivity of the adipocytes. Arsenic exposure strongly affected the expression of arsenic transporters, responsible for arsenic influx and efflux, and induced a pro-inflammatory state in adipocytes by enhancing the expression of the inflammatory interleukin 6 (IL6). Collectively, our data showed that an acute exposure to low levels of arsenic concentrations alters key adipocyte functions, highlighting its contribution to the development of insulin resistance and the pathogenesis of metabolic disorders.


Asunto(s)
Arsénico , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Arsénico/metabolismo , Tejido Adiposo/metabolismo , Adipocitos , Insulina/metabolismo , Metaboloma
3.
Proteomics ; 23(3-4): e2200078, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36576318

RESUMEN

Abusive head trauma (AHT) is a leading cause of mortality and morbidity in infants. While the reported incidence is close to 40 cases per 100'000 births/year, misdiagnoses are commonly observed in cases with atypical, subacute, or chronic presentation. Currently, standard clinical evaluation of inflicted intracranial hemorrhagic injury (ICH) in infants urgently requires a screening test able to identify infants who need additional investigations. Blood biomarkers characteristic of AHT may assist in detecting these infants, improving prognosis through early medical care. To date, the application of innovative omics technologies in retrospective studies of AHT in infants is rare, due also to the blood serum and cerebrospinal fluid of AHT cases being scarce and not systematically accessible. Here, we explored the circulating blood proteomes of infants with severe AHT and their atraumatic controls. We discovered 165 circulating serum proteins that display differential changes in AHT cases compared with atraumatic controls. The peripheral blood proteomes of pediatric AHT commonly reflect: (i) potentially secreted proteome from injured brain, and (ii) proteome dysregulated in the system's circulation by successive biological events following acute ICH. This study opens up a novel opportunity for research efforts in clinical screening of AHT cases.


Asunto(s)
Maltrato a los Niños , Traumatismos Craneocerebrales , Humanos , Lactante , Niño , Proteoma , Estudios Retrospectivos , Maltrato a los Niños/diagnóstico , Traumatismos Craneocerebrales/diagnóstico , Traumatismos Craneocerebrales/epidemiología , Hemorragias Intracraneales/diagnóstico
4.
BMC Public Health ; 22(1): 2446, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577956

RESUMEN

BACKGROUND: According to the World Health Organization, road traffic injuries lead to 1.3 million deaths each year and represent the leading cause of death for young adults under 30 years old. The use of psychoactive substances, including alcohol, drugs and pharmaceuticals, is a well-known risk factor for road traffic injuries. Our study aims to assess the prevalence of substances consumed by drivers in western Switzerland. Such studies are pivotal to improving prevention and developing public awareness campaigns. METHODS: To assess the prevalence of psychoactive substances among drivers, roadside controls were performed in collaboration with local police, using their classical sampling procedures to detect drivers under the influence of drugs or alcohol over two time periods (P1: 2006-2008, P2: 2017-2020). When impaired driving was not suspected by the police, minimally invasive sampling strategies (i.e., oral fluids during P1 and dried blood spots during P2) were performed on volunteer drivers after a road safety survey. A posteriori analyses and statistical interpretation were then performed. RESULTS: Among the 1605 drivers included in the study, 1048 volunteers provided an oral fluid sample, while 299 provided a dried blood spot sample. The percentage of drivers testing positive for at least one substance that can impact driving abilities was stable over time, with a rate of 10.5% positivity measured over both periods. Considering the different categories of substances, a slight variation was observed between both periods, with 7.6 and 6.3% of pharmaceuticals and 3.6 and 4.9% of illicit drugs for P1 and P2, respectively. Regarding the consumption of illicit drugs, the highest percentage of positivity was measured in biological fluids of drivers under the age of 35, during nights and week-ends, periods which are considered particularly prone to fatal accidents for this age group. Disturbingly, the road safety survey highlighted that drivers' perception of the risk of getting positively controlled while driving after drug consumption is low (3.3 on a 1-to-10 scale, N = 299). CONCLUSION: The number of positive cases measured in voluntary drivers who passed the preliminary police check demonstrates the importance of systematic biofluid sampling strategies regarding driving under the influence of psychoactive substances. Although the number of fatal road accidents globally has decreased over time, the results of this study reveal the need for both better prevention and deterrent processes that could potentially reduce the risk of fatal road accidents associated with drug consumption.


Asunto(s)
Conducción de Automóvil , Drogas Ilícitas , Trastornos Relacionados con Sustancias , Adulto Joven , Humanos , Lactante , Adulto , Trastornos Relacionados con Sustancias/epidemiología , Prevalencia , Suiza/epidemiología , Detección de Abuso de Sustancias , Etanol , Accidentes de Tránsito
5.
Chem Res Toxicol ; 35(5): 807-816, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35442019

RESUMEN

Cobalt, chromium, and nickel are used in orthopedic prostheses. They can be released, accumulate in many organs, and be toxic. The aim of this study is to evaluate the cytotoxicity of these metals on human hepatocytes and to improve our knowledge of their cellular toxicity mechanisms by metabolomic analysis. HepaRG cells were incubated for 48 h with increasing concentrations of metals to determine their IC50. Then, a nontargeted metabolomic study using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) was done at IC50 and at a lower concentration (100 nM), near to those found in the blood and liver of patients with prostheses. IC50 were defined at 940, 2, and 1380 µM for Co, Cr, and Ni, respectively. In vitro, Cr appears to be much more toxic than Co and Ni. Metabolomic analysis revealed the disruption of metabolic pathways from the low concentration of 100 nM, in particular tryptophan metabolism and lipid metabolism illustrated by an increase in phenylacetylglycine, a marker of phospholipidosis, for all three metals. They also appear to be responsible for oxidative stress. Dysregulation of these pathways impacts hepatocyte metabolism and may result in hepatotoxicity. Further investigations on accessible biological matrices should be conducted to correlate our in vitro results with the clinical data of prostheses-bearing patients.


Asunto(s)
Cromo , Cobalto , Cromo/química , Cromo/toxicidad , Cobalto/toxicidad , Hepatocitos/química , Humanos , Metales , Níquel/toxicidad
6.
Eur J Med Chem ; 235: 114240, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35325635

RESUMEN

The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in the regulation of the metabolic homeostasis and therefore represent valuable therapeutic targets for the treatment of metabolic diseases. The development of more balanced drugs interacting with PPARs, devoid of the side-effects showed by the currently marketed PPARγ full agonists, is considered the major challenge for the pharmaceutical companies. Here we present a chemoinformatics search approach for new ligands that let us identify a novel PPAR pan-agonist with a very attractive activity profile being able to reduce lipid accumulation and improve insulin sensitivity. This compound represents, therefore, the potential lead of a new class of drugs for treatment of dyslipidemic type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Quimioinformática , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Ligandos , Lípidos , PPAR gamma/agonistas , Receptores Activados del Proliferador del Peroxisoma/metabolismo
7.
Toxicology ; 470: 153153, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35301059

RESUMEN

Obesity is considered as a major public health concern with strong economic and social burdens. Exposure to pollutants such as heavy metals can contribute to the development of obesity and its associated metabolic disorders, including type 2 diabetes and cardiovascular diseases. Adipose tissue is an endocrine and paracrine organ that plays a key role in the development of these diseases and is one of the main target of heavy metal accumulation. In this study, we determined by inductively coupled plasma mass spectrometry cadmium concentrations in human subcutaneous and visceral adipose tissues, ranging between 2.5 nM and 2.5 µM. We found a positive correlation between cadmium levels and age, sex and smoking status and a negative correlation between cadmium and body mass index. Based on cadmium adipose tissue concentrations found in humans, we investigated the effects of cadmium exposure, at concentrations between 1 nM and 10 µM, on adipose-derived human mesenchymal stem cells differentiated into mature adipocytes in vitro. Transcriptomic analysis highlighted that such exposure altered the expression of genes involved in trace element homeostasis and heavy metal detoxification, such as Solute Carrier Family transporters and metallothioneins. This effect correlated with zinc level alteration in cells and cellular media. Interestingly, dysregulation of zinc homeostasis and transporters has been particularly associated with the development of obesity and type 2 diabetes. Moreover, we found that cadmium exposure induces the pro-inflammatory state of the adipocytes by enhancing the expression of genes such as IL-6, IL-1B and CCL2, cytokines also induced in obesity. Finally, cadmium modulates various adipocyte functions such as the insulin response signaling pathway and lipid homeostasis. Collectively, our data identified some of the cellular mechanisms by which cadmium alters adipocyte functions, thus highlighting new facets of its potential contribution to the progression of metabolic disorders.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedades Metabólicas , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Cadmio/toxicidad , Diabetes Mellitus Tipo 2/genética , Humanos , Insulina/metabolismo , Obesidad/inducido químicamente , Obesidad/genética , Transcriptoma , Zinc/metabolismo
8.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34576136

RESUMEN

Men with nonalcoholic fatty liver disease (NAFLD) are more exposed to nonalcoholic steatohepatitis (NASH) and liver fibrosis than women. However, the underlying molecular mechanisms of NALFD sex dimorphism are unclear. We combined gene expression, histological and lipidomic analyses to systematically compare male and female liver steatosis. We characterized hepatosteatosis in three independent mouse models of NAFLD, ob/ob and lipodystrophic fat-specific (PpargFΔ/Δ) and whole-body PPARγ-null (PpargΔ/Δ) mice. We identified a clear sex dimorphism occurring only in PpargΔ/Δ mice, with females showing macro- and microvesicular hepatosteatosis throughout their entire life, while males had fewer lipid droplets starting from 20 weeks. This sex dimorphism in hepatosteatosis was lost in gonadectomized PpargΔ/Δ mice. Lipidomics revealed hepatic accumulation of short and highly saturated TGs in females, while TGs were enriched in long and unsaturated hydrocarbon chains in males. Strikingly, sex-biased genes were particularly perturbed in both sexes, affecting lipid metabolism, drug metabolism, inflammatory and cellular stress response pathways. Most importantly, we found that the expression of key sex-biased genes was severely affected in all the NAFLD models we tested. Thus, hepatosteatosis strongly affects hepatic sex-biased gene expression. With NAFLD increasing in prevalence, this emphasizes the urgent need to specifically address the consequences of this deregulation in humans.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/patología , PPAR gamma/deficiencia , Caracteres Sexuales , Animales , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Femenino , Regulación de la Expresión Génica , Hormonas Esteroides Gonadales/metabolismo , Inflamación/patología , Gotas Lipídicas/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , PPAR gamma/metabolismo , Fenotipo , Transducción de Señal , Triglicéridos/metabolismo
9.
Front Cell Dev Biol ; 9: 627153, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869176

RESUMEN

Long bones from mammals host blood cell formation and contain multiple cell types, including adipocytes. Physiological functions of bone marrow adipocytes are poorly documented. Herein, we used adipocyte-deficient PPARγ-whole body null mice to investigate the consequence of total adipocyte deficiency on bone homeostasis in mice. We first highlighted the dual bone phenotype of PPARγ null mice: one the one hand, the increased bone formation and subsequent trabecularization extending in the long bone diaphysis, due to the well-known impact of PPARγ deficiency on osteoblasts formation and activity; on the other hand, an increased osteoclastogenesis in the cortical bone. We then further explored the cause of this unexpected increased osteoclastogenesis using two independent models of lipoatrophy, which recapitulated this phenotype. This demonstrates that hyperosteoclastogenesis is not intrinsically linked to PPARγ deficiency, but is a consequence of the total lipodystrophy. We further showed that adiponectin, a cytokine produced by adipocytes and mesenchymal stromal cells is a potent inhibitor of osteoclastogenesis in vitro and in vivo. Moreover, pharmacological activation of adiponectin receptors by the synthetic agonist AdipoRon inhibited mature osteoclast activity both in mouse and human cells by blocking podosome formation through AMPK activation. Finally, we demonstrated that AdipoRon treatment blocks bone erosion in vivo in a murine model of inflammatory bone loss, providing potential new approaches to treat osteoporosis.

10.
Sci Rep ; 11(1): 5657, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707505

RESUMEN

As a powerful phenotyping technology, metabolomics provides new opportunities in biomarker discovery through metabolome-wide association studies (MWAS) and the identification of metabolites having a regulatory effect in various biological processes. While mass spectrometry-based (MS) metabolomics assays are endowed with high throughput and sensitivity, MWAS are doomed to long-term data acquisition generating an overtime-analytical signal drift that can hinder the uncovering of real biologically relevant changes. We developed "dbnorm", a package in the R environment, which allows for an easy comparison of the model performance of advanced statistical tools commonly used in metabolomics to remove batch effects from large metabolomics datasets. "dbnorm" integrates advanced statistical tools to inspect the dataset structure not only at the macroscopic (sample batches) scale, but also at the microscopic (metabolic features) level. To compare the model performance on data correction, "dbnorm" assigns a score that help users identify the best fitting model for each dataset. In this study, we applied "dbnorm" to two large-scale metabolomics datasets as a proof of concept. We demonstrate that "dbnorm" allows for the accurate selection of the most appropriate statistical tool to efficiently remove the overtime signal drift and to focus on the relevant biological components of complex datasets.

11.
Sci Rep ; 11(1): 6197, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33737653

RESUMEN

The number of people affected by Type 2 diabetes mellitus (T2DM) is close to half a billion and is on a sharp rise, representing a major and growing public health burden. Given its mild initial symptoms, T2DM is often diagnosed several years after its onset, leaving half of diabetic individuals undiagnosed. While several classical clinical and genetic biomarkers have been identified, improving early diagnosis by exploring other kinds of omics data remains crucial. In this study, we have combined longitudinal data from two population-based cohorts CoLaus and DESIR (comprising in total 493 incident cases vs. 1360 controls) to identify new or confirm previously implicated metabolomic biomarkers predicting T2DM incidence more than 5 years ahead of clinical diagnosis. Our longitudinal data have shown robust evidence for valine, leucine, carnitine and glutamic acid being predictive of future conversion to T2DM. We confirmed the causality of such association for leucine by 2-sample Mendelian randomisation (MR) based on independent data. Our MR approach further identified new metabolites potentially playing a causal role on T2D, including betaine, lysine and mannose. Interestingly, for valine and leucine a strong reverse causal effect was detected, indicating that the genetic predisposition to T2DM may trigger early changes of these metabolites, which appear well-before any clinical symptoms. In addition, our study revealed a reverse causal effect of metabolites such as glutamic acid and alanine. Collectively, these findings indicate that molecular traits linked to the genetic basis of T2DM may be particularly promising early biomarkers.


Asunto(s)
Carnitina/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Predisposición Genética a la Enfermedad , Ácido Glutámico/sangre , Leucina/sangre , Metaboloma/genética , Valina/sangre , Adulto , Anciano , Betaína/sangre , Betaína/orina , Biomarcadores/sangre , Biomarcadores/orina , Carnitina/orina , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/orina , Diagnóstico Precoz , Femenino , Ácido Glutámico/orina , Humanos , Leucina/orina , Lisina/sangre , Lisina/orina , Masculino , Manosa/sangre , Manosa/orina , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Valina/orina
12.
Cell Mol Life Sci ; 78(1): 227-247, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32157317

RESUMEN

Chronic inflammation that affects primarily metabolic organs, such as white adipose tissue (WAT), is considered as a major cause of human obesity-associated co-morbidities. However, the molecular mechanisms initiating this inflammation in WAT are poorly understood. By combining transcriptomics, ChIP-seq and modeling approaches, we studied the global early and late responses to a high-fat diet (HFD) in visceral (vWAT) and subcutaneous (scWAT) AT, the first being more prone to obesity-induced inflammation. HFD rapidly triggers proliferation of adipocyte precursors within vWAT. However, concomitant antiadipogenic signals limit vWAT hyperplastic expansion by interfering with the differentiation of proliferating adipocyte precursors. Conversely, in scWAT, residing beige adipocytes lose their oxidizing properties and allow storage of excessive fatty acids. This phase is followed by tissue hyperplastic growth and increased angiogenic signals, which further enable scWAT expansion without generating inflammation. Our data indicate that scWAT and vWAT differential ability to modulate adipocyte number and differentiation in response to obesogenic stimuli has a crucial impact on the different susceptibility to obesity-related inflammation of these adipose tissue depots.


Asunto(s)
Adipogénesis , Tejido Adiposo Blanco/metabolismo , Diferenciación Celular , Inflamación/patología , Obesidad/patología , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/patología , Animales , Dieta Alta en Grasa , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Inflamación/etiología , Inflamación/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Grasa Intraabdominal/citología , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/complicaciones , Transducción de Señal/genética , Células Madre/citología , Células Madre/metabolismo , Grasa Subcutánea/citología , Grasa Subcutánea/metabolismo , Grasa Subcutánea/patología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Wnt/metabolismo
13.
Metabolism ; 95: 8-20, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30878493

RESUMEN

BACKGROUND: The peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent transcription factor involved in many aspects of metabolism, immune response and development. Numerous studies relying on tissue-specific invalidation of the Pparg gene have shown distinct facets of its activity, whereas the effects of its systemic inactivation remain unexplored due to embryonic lethality. By maintaining PPARγ expression in the placenta, we recently generated a mouse model carrying Pparg full body deletion (PpargΔ/Δ), which in contrast to a previously published model is totally deprived of any form of adipose tissue. Herein, we propose an in-depth study of the metabolic alterations observed in this new model. METHODS: Young adult mice, both males and females analyzed separately, were first phenotyped for their gross anatomical alterations. Systemic metabolic parameters were analyzed in the blood, in static and in dynamic conditions. A full exploration of energy metabolism was performed in calorimetric cages as well as in metabolic cages. Our study was completed by expression analyses of a set of specific genes. MAIN FINDINGS: PpargΔ/Δ mice show a striking complete absence of any form of adipose tissue, which triggers a complex metabolic phenotype including increased lean mass with organomegaly, hypermetabolism, urinary energy loss, hyperphagia, and increased amino acid metabolism. PpargΔ/Δ mice develop severe type 2 diabetes, characterized by hyperglycemia, hyperinsulinemia, polyuria and polydispsia. They show a remarkable metabolic inflexibility, as indicated by the inability to shift substrate oxidation between glucose and lipids, in both ad libitum fed state and fed/fasted/refed transitions. Moreover, upon fasting PpargΔ/Δ mice enter a severe hypometabolic state. CONCLUSIONS: Our data comprehensively describe the impact of lipoatrophy on metabolic homeostasis. As such, the presented data on PpargΔ/Δ mice gives new clues on what and how to explore severe lipodystrophy and its subsequent metabolic complications in human.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Trastornos del Metabolismo de los Lípidos/genética , Tamaño de los Órganos/genética , PPAR gamma/genética , Tejido Adiposo/anatomía & histología , Animales , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/genética , Femenino , Eliminación de Gen , Glucosa/metabolismo , Trastornos del Metabolismo de los Lípidos/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Ratones , Embarazo
14.
FEBS Open Bio ; 9(2): 328-334, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30761257

RESUMEN

Obesity is a condition characterized by adipose tissue hypertrophy; it is estimated that the obesity epidemic accounted for 4 million deaths in 2015 and that 70% of these were due to cardiovascular disease (CVD). One of the mechanisms linking obesity to CVD is the ability of adipose tissue to secrete circulating factors. We hypothesized that adipose tissue and its secretory products may influence mineralocorticoid receptor (MR) expression. Here, we showed that expression of MR and its downstream targets (Cnksr3, Scnn1b, and Sgk1) were significantly reduced in the kidneys of peroxisome proliferator-activated receptor-γ null (PpargΔ/Δ ) and A-ZIP/F-1 (AZIPtg/+) lipoatrophic mice with respect to their controls. Intriguingly, MR expression was also found to be significantly reduced in the kidneys of genetically obese ob/ob mice. Our data suggest that adipose tissue contributes to the regulation of MR expression. Given that leptin deficiency seems to be the major feature shared by PpargΔ/Δ , AZIPtg/+, and ob/ob mice, we speculate that adipose tissue modulates MR expression through the leptin system.


Asunto(s)
Lipodistrofia/metabolismo , Receptores de Mineralocorticoides/genética , Animales , Modelos Animales de Enfermedad , Femenino , Leptina/deficiencia , Leptina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Obesidad/metabolismo , Receptores de Mineralocorticoides/metabolismo
15.
Front Immunol ; 9: 2573, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483254

RESUMEN

Adult hematopoiesis takes place in the perivascular zone of the bone cavity, where endothelial cells, mesenchymal stromal/stem cells and their derivatives such as osteoblasts are key components of bone marrow (BM) niches. Defining the contribution of BM adipocytes to the hematopoietic stem cell niche remains controversial. While an excess of medullar adiposity is generally considered deleterious for hematopoiesis, an active role for adipocytes in shaping the niche has also been proposed. We thus investigated the consequences of total adipocyte deletion, including in the BM niche, on adult hematopoiesis using mice carrying a constitutive deletion of the gene coding for the nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ). We show that PpargΔ/Δ lipodystrophic mice exhibit severe extramedullary hematopoiesis (EMH), which we found to be non-cell autonomous, as it is reproduced when wild-type donor BM cells are transferred into PpargΔ/Δ recipients. This phenotype is not due to a specific alteration linked to Pparg deletion, such as chronic inflammation, since it is also found in AZIPtg/+ mice, another lipodystrophic mouse model with normal PPARγ expression, that display only very moderate levels of inflammation. In both models, the lack of adipocytes alters subpopulations of both myeloid and lymphoid cells. The CXCL12/CXCR4 axis in the BM is also dysregulated in an adipocyte deprived environment supporting the hypothesis that adipocytes are required for normal hematopoietic stem cell mobilization or retention. Altogether, these data suggest an important role for adipocytes, and possibly for the molecular interactions they provide within the BM, in maintaining the appropriate microenvironment for hematopoietic homeostasis.


Asunto(s)
Adipocitos/fisiología , Hematopoyesis/fisiología , Adipocitos/metabolismo , Adipogénesis/fisiología , Animales , Médula Ósea/metabolismo , Médula Ósea/fisiología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/fisiología , Huesos/metabolismo , Huesos/fisiología , Quimiocina CXCL12/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Femenino , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Osteoblastos/metabolismo , Osteoblastos/fisiología , PPAR gamma/metabolismo , Receptores CXCR4/metabolismo , Nicho de Células Madre/fisiología
16.
Int J Mol Sci ; 19(7)2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30011852

RESUMEN

Skeletal muscle is a regenerative tissue which can repair damaged myofibers through the activation of tissue-resident muscle stem cells (MuSCs). Many muscle diseases with impaired regeneration cause excessive adipose tissue accumulation in muscle, alter the myogenic fate of MuSCs, and deregulate the cross-talk between MuSCs and fibro/adipogenic progenitors (FAPs), a bi-potent cell population which supports myogenesis and controls intra-muscular fibrosis and adipocyte formation. In order to better characterize the interaction between adipogenesis and myogenesis, we studied muscle regeneration and MuSC function in whole body Pparg null mice generated by epiblast-specific Cre/lox deletion (PpargΔ/Δ). We demonstrate that deletion of PPARγ completely abolishes ectopic muscle adipogenesis during regeneration and impairs MuSC expansion and myogenesis after injury. Ex vivo assays revealed that perturbed myogenesis in PpargΔ/Δ mice does not primarily result from intrinsic defects of MuSCs or from perturbed myogenic support from FAPs. The immune transition from a pro- to anti-inflammatory MuSC niche during regeneration is perturbed in PpargΔ/Δ mice and suggests that PPARγ signaling in macrophages can interact with ectopic adipogenesis and influence muscle regeneration. Altogether, our study demonstrates that a PPARγ-dependent adipogenic response regulates muscle fat infiltration during regeneration and that PPARγ is required for MuSC function and efficient muscle repair.


Asunto(s)
Adipogénesis/genética , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , PPAR gamma/genética , Regeneración/genética , Adipocitos/citología , Adipocitos/metabolismo , Animales , Diferenciación Celular/genética , Células Cultivadas , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones Noqueados , Ratones Transgénicos , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Mioblastos/citología , Mioblastos/metabolismo , PPAR gamma/metabolismo
17.
Front Pharmacol ; 9: 702, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30018553

RESUMEN

A growing number of evidence demonstrates that ancestral exposure to xenobiotics (pollutants, drugs of abuse, etc.) can perturb the physiology and behavior of descendants. Both maternal and paternal transmission of phenotype across generations has been proved, demonstrating that parental drug history may have significant implications for subsequent generations. In the last years, the burden of novel synthetic opioid (NSO) consumption, due to increased medical prescription of pain medications and to easier accessibility of these substances on illegal market, is raising new questions first in term of public health, but also about the consequences of the parental use of these drugs on future generations. Besides being associated to the neonatal abstinence syndrome, in utero exposure to opioids has an impact on neuronal development with long-term repercussions that are potentially transmitted to subsequent generations. In addition, recent reports suggest that opioid use even before conception influences the reactivity to opioids of the progeny and the following generations, likely through epigenetic mechanisms. This review describes the current knowledge about the transgenerational effects of opioid consumption. We summarize the preclinical and clinical findings showing the implications for the subsequent generations of parental exposure to opioids earlier in life. Limitations of the existing data on NSOs and new perspectives of the research are also discussed, as well as clinical and forensic consequences.

18.
Am J Physiol Renal Physiol ; 314(6): F1154-F1165, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29488390

RESUMEN

Different complex mechanisms control the morphology of podocyte foot processes and their interactions with the underlying basement membrane. Injuries to this system often cause glomerular dysfunction and albuminuria. The present study aimed at identifying early markers of glomerular damage in diabetic nephropathy. For this purpose, we performed a microarray analysis on kidneys of 3-wk-old peroxisome proliferator-activated receptor-γ (PPARγ)-null and AZIP/F1 mice, which are two models of diabetic nephropathy due to lipodystrophy. This was followed by functional annotation of the enriched clusters of genes. One of the significant changes in the early stages of glomerular damage was the increase of hemicentin 1 (HMCN1). Its expression and distribution were then studied by real-time PCR and immunofluorescence in various models of glomerular damage and on podocyte cell cultures. HMCN1 progressively increased in the glomeruli of diabetic mice, according to disease severity, as well as in puromycin aminonucleoside (PA)-treated rats. Studies on murine and human podocytes showed an increased HMCN1 deposition upon different pathological stimuli, such as hyperglycemia, transforming growth factor-ß (TGF-ß), and PA. In vitro silencing studies showed that HMCN1 mediated the rearrangements of podocyte cytoskeleton induced by TGF-ß. Finally, we demonstrated an increased expression of HMCN1 in the kidneys of patients with proteinuric nephropathies. In summary, our studies identified HMCN1 as a new molecule involved in the dynamic changes of podocyte foot processes. Its increased expression associated with podocyte dysfunction points to HMCN1 as a possible marker for the early glomerular damage occurring in different proteinuric nephropathies.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Nefropatías Diabéticas/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Inmunoglobulinas/metabolismo , Nefrosis/metabolismo , Podocitos/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Células Cultivadas , Citoesqueleto/metabolismo , Citoesqueleto/patología , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/genética , Femenino , Glucosa/farmacología , Humanos , Inmunoglobulinas/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Nefrosis/genética , Nefrosis/patología , PPAR gamma/genética , PPAR gamma/metabolismo , Podocitos/efectos de los fármacos , Podocitos/patología , Proteinuria/genética , Proteinuria/metabolismo , Proteinuria/patología , Ratas Sprague-Dawley , Transducción de Señal , Factor de Crecimiento Transformador beta/farmacología , Regulación hacia Arriba
19.
J Invest Dermatol ; 138(3): 500-510, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28964716

RESUMEN

PPARγ regulates multiple aspects of skin physiology, including sebocyte differentiation, keratinocyte proliferation, epithelial stem cell survival, adipocyte biology, and inflammatory skin responses. However, the effects of its global deletion, namely of nonredundant key functions of PPARγ signaling in mammalian skin, are yet unknown because of embryonic lethality. Here, we describe the skin and hair phenotype of a whole-body PPARγ-null mouse (PpargΔ/Δ), obtained by preserving PPARγ expression in the placenta. PpargΔ/Δ mice exhibited total lipoatrophy and complete absence of sebaceous glands. Right after birth, hair follicle (HF) morphogenesis was transiently delayed, along with reduced expression of HF differentiation markers and of transcriptional regulators necessary for HF development. Later, adult PpargΔ/Δ mice developed scarring alopecia and severe perifollicular inflammation. Skin analyses in other models of lipodystrophy, AZIPtg/+ and Adipoq-Cretg/+Ppargfl/fl mice, coupled with skin graft experiments, showed that the early defects observed in hair morphogenesis were caused by the absence of adipose tissue. In contrast, the late alteration of HF cycle and appearance of inflammation were observed only in PpargΔ/Δ mice and likely were due to the lack sebaceous glands. Our findings underscore the increasing appreciation for the importance of adipose tissue-mediated signals in HF development and function.


Asunto(s)
Folículo Piloso/crecimiento & desarrollo , Lipodistrofia/patología , Morfogénesis , PPAR gamma/fisiología , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Homeostasis , Ratones , Ratones Noqueados , PPAR gamma/genética
20.
Nat Commun ; 8(1): 93, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28733645

RESUMEN

White adipose tissue (WAT) can undergo a phenotypic switch, known as browning, in response to environmental stimuli such as cold. Post-translational modifications of histones have been shown to regulate cellular energy metabolism, but their role in white adipose tissue physiology remains incompletely understood. Here we show that histone deacetylase 3 (HDAC3) regulates WAT metabolism and function. Selective ablation of Hdac3 in fat switches the metabolic signature of WAT by activating a futile cycle of de novo fatty acid synthesis and ß-oxidation that potentiates WAT oxidative capacity and ultimately supports browning. Specific ablation of Hdac3 in adipose tissue increases acetylation of enhancers in Pparg and Ucp1 genes, and of putative regulatory regions of the Ppara gene. Our results unveil HDAC3 as a regulator of WAT physiology, which acts as a molecular brake that inhibits fatty acid metabolism and WAT browning.Histone deacetylases, such as HDAC3, have been shown to alter cellular metabolism in various tissues. Here the authors show that HDAC3 regulates WAT metabolism by activating a futile cycle of fatty acid synthesis and oxidation, which supports WAT browning.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/fisiología , Histona Desacetilasas/metabolismo , Adipocitos/fisiología , Animales , Línea Celular , Dieta Alta en Grasa , Regulación de la Expresión Génica/fisiología , Silenciador del Gen , Histona Desacetilasas/genética , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...