Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-31093601

RESUMEN

Curved micromechanical beams are a versatile platform for exploring multistable behavior, with potential applications in mechanical based logic elements and electrical and optical switches. Here we demonstrate bidirectional electrostatic actuation of a bistable, latched, micromechanical beam by the same electrode, which was used for the snap-through switching of the device. The release of the mechanically-latched beam is achieved by pre-loading the structure using a rising voltage applied to the electrode, followed by a sudden decrease of the voltage. This abrupt removal of the loading results in a transient response and dynamic snap-back of the beam.

2.
Appl Phys Lett ; 108(7)2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27141103

RESUMEN

We demonstrate dynamic snap-through from a primary to a secondary statically inaccessible stable configuration in single crystal silicon, curved, doubly clamped micromechanical beam structures. Nanoscale motion of the fabricated bistable micromechanical devices was transduced using a high speed camera. Our experimental and theoretical results collectively show, that the transition between the two stable states was solely achieved by a tailored time dependent electrostatic actuation. Fast imaging of micromechanical motion allowed for direct visualization of dynamic trapping at the statically inaccessible state. These results further suggest that our direct dynamic actuation transcends prevalent limitations in controlling geometrically non-linear microstructures, and may have applications extending to multi-stable, topologically optimized micromechanical logic and non-volatile memory architectures.

3.
Materials (Basel) ; 6(3): 726-737, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28809337

RESUMEN

A continuum-based micromechanical model is employed for the prediction of the elasto-plastic behavior of periodic microstructural arrays that can generate negative values of Poisson's ratios. The combined effects of the negative Poisson's ratio generated by the array microstructure and the elastoplastic behavior of the constituents are studied. A design methodology for the determination of the constituents' properties of two-phase arrays that generate required values of negative Poisson's ratio is considered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA