Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
PLOS Glob Public Health ; 3(10): e0002454, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37856430

RESUMEN

Human group B Streptococcus (GBS) infections attributable to an invasive, hypervirulent sequence type (ST) 283 have been associated with freshwater fish consumption in Asia. The origin, geographic dispersion pathways and host transitions of GBS ST283 remain unresolved. We gather 328 ST283 isolate whole-genome sequences collected from humans and fish between 1998 and 2021, representing eleven countries across four continents. We apply Bayesian phylogeographic analyses to reconstruct the dispersal history of ST283 and combine ST283 phylogenies with genetic markers and host association to investigate host switching and the gain and loss of antimicrobial resistance and virulence factor genes. Initial dispersal within Asia followed ST283 emergence in the early 1980s, with Singapore, Thailand and Hong Kong observed as early transmission hubs. Subsequent intercontinental dispersal originating from Vietnam began in the decade commencing 2001, demonstrating ST283 holds potential to expand geographically. Furthermore, we observe bidirectional host switching, with the detection of more frequent human-to-fish than fish-to-human transitions, suggesting that sound wastewater management, hygiene and sanitation may help to interrupt chains of transmission between hosts. We also show that antimicrobial resistance and virulence factor genes were lost more frequently than gained across the evolutionary history of ST283. Our findings highlight the need for enhanced surveillance, clinical awareness, and targeted risk mitigation to limit transmission and reduce the impact of an emerging pathogen associated with a high-growth aquaculture industry.

2.
PLOS Glob Public Health ; 3(2): e0001305, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36963007

RESUMEN

Use of antimicrobials in farming has enabled the growth of intensive animal production and helped in meeting the global increase in demand for animal protein. However, the widespread use of veterinary antimicrobials drives antimicrobial resistance, with important consequences for animal health, and potentially human health. Global monitoring of antimicrobial use is essential: first, to track progress in reducing the reliance of farming on antimicrobials. Second, to identify countries where antimicrobial-stewardship efforts should be targeted to curb antimicrobial resistance. Data on usage of antimicrobials in food animals were collected from 42 countries. Multivariate regression models were used in combination with projections of animal counts for cattle, sheep, chicken, and pigs from the Food and Agriculture Organization to estimate global antimicrobial usage of veterinary antimicrobials in 2020 and 2030. Maps of animal densities were used to identify geographic hotspots of antimicrobial use. In each country, estimates of antimicrobial use (tonnes) were calibrated to match continental-level reports of antimicrobial use intensity (milligrams per kilogram of animal) from the World Organization for Animal Health, as well as country-level reports of antimicrobial use from countries that made this information publicly available. Globally, antimicrobial usage was estimated at 99,502 tonnes (95% CI 68,535-198,052) in 2020 and is projected, based on current trends, to increase by 8.0% to 107,472 tonnes (95% CI: 75,927-202,661) by 2030. Hotspots of antimicrobial use were overwhelmingly in Asia (67%), while <1% were in Africa. Findings indicate higher global antimicrobial usage in 2030 compared to prior projections that used data from 2017; this is likely associated with an upward revision of antimicrobial use in Asia/Oceania (~6,000 tonnes) and the Americas (~4,000 tonnes). National-level reporting of antimicrobial use should be encouraged to better evaluate the impact of national policies on antimicrobial use levels.

3.
Emerg Infect Dis ; 29(2): 351-359, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36692362

RESUMEN

The high economic impact and zoonotic potential of avian influenza call for detailed investigations of dispersal dynamics of epidemics. We integrated phylogeographic and epidemiologic analyses to investigate the dynamics of a low pathogenicity avian influenza (H3N1) epidemic that occurred in Belgium during 2019. Virus genomes from 104 clinical samples originating from 85% of affected farms were sequenced. A spatially explicit phylogeographic analysis confirmed a dominating northeast to southwest dispersal direction and a long-distance dispersal event linked to direct live animal transportation between farms. Spatiotemporal clustering, transport, and social contacts strongly correlated with the phylogeographic pattern of the epidemic. We detected only a limited association between wind direction and direction of viral lineage dispersal. Our results highlight the multifactorial nature of avian influenza epidemics and illustrate the use of genomic analyses of virus dispersal to complement epidemiologic and environmental data, improve knowledge of avian influenza epidemiologic dynamics, and enhance control strategies.


Asunto(s)
Epidemias , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Gripe Aviar/epidemiología , Bélgica/epidemiología , Trazado de Contacto , Filogeografía , Filogenia , Pollos
4.
Virus Evol ; 8(1): veac041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795297

RESUMEN

Phylogeographic inference of the dispersal history of viral lineages offers key opportunities to tackle epidemiological questions about the spread of fast-evolving pathogens across human, animal and plant populations. In continuous space, i.e. when locations are specified by longitude and latitude, these reconstructions are however often limited by the availability or accessibility of precise sampling locations required for such spatially explicit analyses. We here review the different approaches that can be considered when genomic sequences are associated with a geographic area of sampling instead of precise coordinates. In particular, we describe and compare the approaches to define homogeneous and heterogeneous prior ranges of sampling coordinates.

5.
PLoS Negl Trop Dis ; 15(12): e0009980, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34851953

RESUMEN

The situation of human rabies in Thailand has gradually declined over the past four decades. However, the number of animal rabies cases has slightly increased in the last ten years. This study thus aimed to describe the characteristics of animal rabies between 2017 and 2018 in Thailand in which the prevalence was fairly high and to quantify the association between monthly rabies occurrences and explainable variables using the generalized additive models (GAMs) to predict the spatial risk areas for rabies spread. Our results indicate that the majority of animals affected by rabies in Thailand are dogs. Most of the affected dogs were owned, free or semi-free roaming, and unvaccinated. Clusters of rabies were highly distributed in the northeast, followed by the central and the south of the country. Temporally, the number of cases gradually increased after June and reached a peak in January. Based on our spatial models, human and cattle population density as well as the spatio-temporal history of rabies occurrences, and the distances from the cases to the secondary roads and country borders are identified as the risk factors. Our predictive maps are applicable for strengthening the surveillance system in high-risk areas. Nevertheless, the identified risk factors should be rigorously considered and integrated into the strategic plans for the prevention and control of animal rabies in Thailand.


Asunto(s)
Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/prevención & control , Modelos Estadísticos , Rabia/epidemiología , Rabia/veterinaria , Análisis Espacial , Animales , Enfermedades de los Perros/virología , Perros , Rabia/prevención & control , Vacunas Antirrábicas/administración & dosificación , Vacunas Antirrábicas/inmunología , Factores de Riesgo , Tailandia/epidemiología
6.
Front Med (Lausanne) ; 8: 743988, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790677

RESUMEN

Introduction: We assessed the usefulness of SARS-CoV-2 RT-PCR cycle thresholds (Ct) values trends produced by the LHUB-ULB (a consolidated microbiology laboratory located in Brussels, Belgium) for monitoring the epidemic's dynamics at local and national levels and for improving forecasting models. Methods: SARS-CoV-2 RT-PCR Ct values produced from April 1, 2020, to May 15, 2021, were compared with national COVID-19 confirmed cases notifications according to their geographical and time distribution. These Ct values were evaluated against both a phase diagram predicting the number of COVID-19 patients requiring intensive care and an age-structured model estimating COVID-19 prevalence in Belgium. Results: Over 155,811 RT-PCR performed, 12,799 were positive and 7,910 Ct values were available for analysis. The 14-day median Ct values were negatively correlated with the 14-day mean daily positive tests with a lag of 17 days. In addition, the 14-day mean daily positive tests in LHUB-ULB were strongly correlated with the 14-day mean confirmed cases in the Brussels-Capital and in Belgium with coinciding start, peak, and end of the different waves of the epidemic. Ct values decreased concurrently with the forecasted phase-shifts of the diagram. Similarly, the evolution of 14-day median Ct values was negatively correlated with daily estimated prevalence for all age-classes. Conclusion: We provide preliminary evidence that trends of Ct values can help to both follow and predict the epidemic's trajectory at local and national levels, underlining that consolidated microbiology laboratories can act as epidemic sensors as they gather data that are representative of the geographical area they serve.

7.
Arch Public Health ; 79(1): 164, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34517923

RESUMEN

Using publicly available data on the number of new hospitalisations we use a newly developed statistical model to produce a phase portrait to monitor the epidemic allowing for assessing whether or not intervention measures are needed to keep hospital capacity under control. The phase portrait is called a cliquets' diagram, referring to the discrete alarm phases it points to. Using this cliquets' diagram we show that intervention measures were associated with an effective mitigation of a Summer resurgence but that too little too late was done to prevent a large autumn wave in Belgium.

8.
Nat Commun ; 12(1): 5384, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508079

RESUMEN

Antimicrobial resistance (AMR) is a growing threat to human and animal health. However, in aquatic animals-the fastest growing food animal sector globally-AMR trends are seldom documented, particularly in Asia, which contributes two-thirds of global food fish production. Here, we present a systematic review and meta-analysis of 749 point prevalence surveys reporting antibiotic-resistant bacteria from aquatic food animals in Asia, extracted from 343 articles published in 2000-2019. We find concerning levels of resistance to medically important antimicrobials in foodborne pathogens. In aquaculture, the percentage of antimicrobial compounds per survey with resistance exceeding 50% (P50) plateaued at 33% [95% confidence interval (CI) 28 to 37%] between 2000 and 2018. In fisheries, P50 decreased from 52% [95% CI 39 to 65%] to 22% [95% CI 14 to 30%]. We map AMR at 10-kilometer resolution, finding resistance hotspots along Asia's major river systems and coastal waters of China and India. Regions benefitting most from future surveillance efforts are eastern China and India. Scaling up surveillance to strengthen epidemiological evidence on AMR and inform aquaculture and fisheries interventions is needed to mitigate the impact of AMR globally.


Asunto(s)
Antibacterianos/efectos adversos , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Enfermedades de los Peces/tratamiento farmacológico , Explotaciones Pesqueras/tendencias , Animales , Antibacterianos/administración & dosificación , Asia , Bacterias/aislamiento & purificación , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/microbiología , Productos Pesqueros/microbiología , Explotaciones Pesqueras/estadística & datos numéricos , Peces/microbiología , Prevalencia
9.
Int J Health Geogr ; 20(1): 29, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127000

RESUMEN

BACKGROUND: The COVID-19 pandemic is affecting nations globally, but with an impact exhibiting significant spatial and temporal variation at the sub-national level. Identifying and disentangling the drivers of resulting hospitalisation incidence at the local scale is key to predict, mitigate and manage epidemic surges, but also to develop targeted measures. However, this type of analysis is often not possible because of the lack of spatially-explicit health data and spatial uncertainties associated with infection. METHODS: To overcome these limitations, we propose an analytical framework to investigate potential drivers of the spatio-temporal heterogeneity in COVID-19 hospitalisation incidence when data are only available at the hospital level. Specifically, the approach is based on the delimitation of hospital catchment areas, which allows analysing associations between hospitalisation incidence and spatial or temporal covariates. We illustrate and apply our analytical framework to Belgium, a country heavily impacted by two COVID-19 epidemic waves in 2020, both in terms of mortality and hospitalisation incidence. RESULTS: Our spatial analyses reveal an association between the hospitalisation incidence and the local density of nursing home residents, which confirms the important impact of COVID-19 in elderly communities of Belgium. Our temporal analyses further indicate a pronounced seasonality in hospitalisation incidence associated with the seasonality of weather variables. Taking advantage of these associations, we discuss the feasibility of predictive models based on machine learning to predict future hospitalisation incidence. CONCLUSION: Our reproducible analytical workflow allows performing spatially-explicit analyses of data aggregated at the hospital level and can be used to explore potential drivers and dynamic of COVID-19 hospitalisation incidence at regional or national scales.


Asunto(s)
COVID-19 , Pandemias , Anciano , Bélgica/epidemiología , Hospitales , Humanos , Incidencia , SARS-CoV-2 , Análisis Espacio-Temporal
10.
Front Med (Lausanne) ; 8: 650581, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33889587

RESUMEN

Introduction: Since the first wave of COVID-19 in Europe, new diagnostic tools using antigen detection and rapid molecular techniques have been developed. Our objective was to elaborate a diagnostic algorithm combining antigen rapid diagnostic tests, automated antigen dosing and rapid molecular tests and to assess its performance under routine conditions. Methods: An analytical performance evaluation of four antigen rapid tests, one automated antigen dosing and one molecular point-of-care test was performed on samples sent to our laboratory for a SARS-CoV-2 reverse transcription PCR. We then established a diagnostic algorithm by approaching median viral loads in target populations and evaluated the limit of detection of each test using the PCR cycle threshold values. A field performance evaluation including a clinical validation and a user-friendliness assessment was then conducted on the antigen rapid tests in point-of-care settings (general practitioners and emergency rooms) for outpatients who were symptomatic for <7 days. Automated antigen dosing was trialed for the screening of asymptomatic inpatients. Results: Our diagnostic algorithm proposed to test recently symptomatic patients using rapid antigen tests, asymptomatic patients using automated tests, and patients requiring immediate admission using molecular point-of-care tests. Accordingly, the conventional reverse transcription PCR was kept as a second line tool. In this setting, antigen rapid tests yielded an overall sensitivity of 83.3% (not significantly different between the four assays) while the use of automated antigen dosing would have spared 93.5% of asymptomatic inpatient screening PCRs. Conclusion: Using tests not considered the "gold standard" for COVID-19 diagnosis on well-defined target populations allowed for the optimization of their intrinsic performances, widening the scale of our testing arsenal while sparing molecular resources for more seriously ill patients.

11.
Parasit Vectors ; 14(1): 93, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536057

RESUMEN

BACKGROUND: In the last two decades, recurrent epizootics of bluetongue virus and Schmallenberg virus have been reported in the western Palearctic region. These viruses affect domestic cattle, sheep, goats and wild ruminants and are transmitted by native hematophagous midges of the genus Culicoides (Diptera: Ceratopogonidae). Culicoides dispersal is known to be stratified, i.e. due to a combination of dispersal processes occurring actively at short distances and passively or semi-actively at long distances, allowing individuals to jump hundreds of kilometers. METHODS: Here, we aim to identify the environmental factors that promote or limit gene flow of Culicoides obsoletus, an abundant and widespread vector species in Europe, using an innovative framework integrating spatial, population genetics and statistical approaches. A total of 348 individuals were sampled in 46 sites in France and were genotyped using 13 newly designed microsatellite markers. RESULTS: We found low genetic differentiation and a weak population structure for C. obsoletus across the country. Using three complementary inter-individual genetic distances, we did not detect any significant isolation by distance, but did detect significant anisotropic isolation by distance on a north-south axis. We employed a multiple regression on distance matrices approach to investigate the correlation between genetic and environmental distances. Among all the environmental factors that were tested, only cattle density seems to have an impact on C. obsoletus gene flow. CONCLUSIONS: The high dispersal capacity of C. obsoletus over land found in the present study calls for a re-evaluation of the impact of Culicoides on virus dispersal, and highlights the urgent need to better integrate molecular, spatial and statistical information to guide vector-borne disease control.


Asunto(s)
Lengua Azul/transmisión , Infecciones por Bunyaviridae/transmisión , Ceratopogonidae/genética , Ceratopogonidae/virología , Ambiente , Insectos Vectores/virología , Animales , Virus de la Lengua Azul/fisiología , Bovinos/parasitología , Ceratopogonidae/fisiología , Europa (Continente) , Conducta Alimentaria , Femenino , Francia , Flujo Génico , Genotipo , Insectos Vectores/fisiología , Repeticiones de Microsatélite , Orthobunyavirus/fisiología , Dinámica Poblacional , Estaciones del Año
12.
Front Vet Sci ; 8: 790701, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34993247

RESUMEN

Poor management of dog populations causes many problems in different countries, including rabies. To strategically design a dog population management, certain sets of data are required, such as the population size and spatial distribution of dogs. However, these data are rarely available or incomplete. Hence, this study aimed to describe the characteristics of dog populations in Thailand, explore their spatial distribution and relevant factors, and estimate the number of dogs in the whole country. First, four districts were selected as representatives of each region. Each district was partitioned into grids with a 300-m resolution. The selected grids were then surveyed, and the number of dogs and related data were collected. Random forest models with a two-part approach were used to quantify the association between the surveyed dog population and predictor variables. The spatial distribution of dog populations was then predicted. A total of 1,750 grids were surveyed (945 grids with dog presence and 805 grids with dog absence). Among the surveyed dogs, 86.6% (12,027/13,895) were owned. Of these, 51% were classified as independent, followed by confined (25%), semi-independent (21%), and unidentified dogs (3%). Seventy-two percent (1,348/1,868) of the ownerless dogs were feral, and the rest were community dogs. The spatial pattern of the dog populations was highly distributed in big cities such as Bangkok and its suburbs. In owned dogs, it was linked to household demographics, whereas it was related to community factors in ownerless dogs. The number of estimated dogs in the entire country was 12.8 million heads including 11.2 million owned dogs (21.7 heads/km2) and 1.6 million ownerless dogs (3.2 heads/km2). The methods developed here are extrapolatable to a larger area and use much less budget and manpower compared to the present practices. Our results are helpful for canine rabies prevention and control programs, such as dog population management and control and rabies vaccine allocation.

13.
Prev Vet Med ; 186: 105206, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33261930

RESUMEN

Efficient planning of measures limiting epidemic spread requires information on farm locations and sizes (number of animals per farm). However, such data are rarely available. The intensification process which is operating in most low- and middle-income countries (LMICs), comes together with a spatial clustering of farms, a characteristic epidemiological models are sensitive to. We developed farm distribution models predicting both the location and the number of animals per farm, while accounting for the spatial clustering of farms in data-poor countries, using poultry production as an example. We selected four countries, Nigeria, Thailand, Argentina and Belgium, along a gradient of intensification expressed by the per capita Gross Domestic Product (GDP). First, we investigated the distribution of chicken farms along the spectrum of intensification. Second, we built farm distribution models (FDM) based on censuses of commercial farms of each of the four countries, using point pattern and random forest models. As an external validation, we predicted farm locations and sizes in Bangladesh. The number of chicken per farm increased gradually in line with the gradient of GDP per capita in the following order: Nigeria, Thailand, Argentina and Belgium. Interestingly, we did not find such a gradient for farm clustering. Our modelling procedure could only partly reproduce the observed datasets in each of the four sample countries in internal validation. However, in the external validation, the clustering of farms could not be reproduced and the spatial predictors poorly explained the number and location of farms and farm sizes in Bangladesh. Further improvements of the methodology should explore other covariates of the intensity of farms and farm sizes, as well as improvements of the methodology. Structural transformation, economic development and environmental conditions are essential characteristics to consider for an extrapolation of our FDM procedure, as generalisation appeared challenging. We believe the FDM procedure could ultimately be used as a predictive tool in data-poor countries.


Asunto(s)
Crianza de Animales Domésticos/estadística & datos numéricos , Pollos , Granjas/estadística & datos numéricos , Crianza de Animales Domésticos/métodos , Animales , Argentina , Bélgica , Análisis por Conglomerados , Modelos Teóricos , Nigeria , Análisis Espacial , Tailandia
14.
Mol Biol Evol ; 38(4): 1608-1613, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33316043

RESUMEN

Since the start of the COVID-19 pandemic, an unprecedented number of genomic sequences of SARS-CoV-2 have been generated and shared with the scientific community. The unparalleled volume of available genetic data presents a unique opportunity to gain real-time insights into the virus transmission during the pandemic, but also a daunting computational hurdle if analyzed with gold-standard phylogeographic approaches. To tackle this practical limitation, we here describe and apply a rapid analytical pipeline to analyze the spatiotemporal dispersal history and dynamics of SARS-CoV-2 lineages. As a proof of concept, we focus on the Belgian epidemic, which has had one of the highest spatial densities of available SARS-CoV-2 genomes. Our pipeline has the potential to be quickly applied to other countries or regions, with key benefits in complementing epidemiological analyses in assessing the impact of intervention measures or their progressive easement.


Asunto(s)
COVID-19/transmisión , COVID-19/virología , Genoma Viral , Filogeografía , SARS-CoV-2/genética , Bélgica , COVID-19/epidemiología , Evolución Molecular , Genómica , Humanos , Funciones de Verosimilitud , Mutación , Aislamiento de Pacientes , Filogenia , Distanciamiento Físico , Análisis Espacio-Temporal , Flujo de Trabajo
15.
Antibiotics (Basel) ; 9(12)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348801

RESUMEN

Demand for animal protein is rising globally and has been facilitated by the expansion of intensive farming. However, intensive animal production relies on the regular use of antimicrobials to maintain health and productivity on farms. The routine use of antimicrobials fuels the development of antimicrobial resistance, a growing threat for the health of humans and animals. Monitoring global trends in antimicrobial use is essential to track progress associated with antimicrobial stewardship efforts across regions. We collected antimicrobial sales data for chicken, cattle, and pig systems in 41 countries in 2017 and projected global antimicrobial consumption from 2017 to 2030. We used multivariate regression models and estimated global antimicrobial sales in 2017 at 93,309 tonnes (95% CI: 64,443, 149,886). Globally, sales are expected to rise by 11.5% in 2030 to 104,079 tonnes (95% CI: 69,062, 172,711). All continents are expected to increase their antimicrobial use. Our results show lower global antimicrobial sales in 2030 compared to previous estimates, owing to recent reports of decrease in antimicrobial use, in particular in China, the world's largest consumer. Countries exporting a large proportion of their production are more likely to report their antimicrobial sales data than countries with small export markets.

16.
Sci Rep ; 10(1): 21878, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33318576

RESUMEN

Globally aquaculture contributes 8% of animal protein intake to the human diet, and per capita consumption is increasing faster than meat and dairy consumption. Reports have documented antimicrobial use in the rapidly expanding aquaculture industry, which may contribute to the rise of antimicrobial resistance, carrying potential consequences for animal-, human-, and ecosystem-health. However, quantitative antimicrobial use across a highly diversified aquaculture industry is not well characterized. Here, we estimate global trends in antimicrobial use in aquaculture in 2017 and 2030 to help target future surveillance efforts and antimicrobial stewardship policies. We estimate antimicrobial use intensity (mg kg-1) for six species groups though a systematic review of point prevalence surveys, which identified 146 species-specific antimicrobial use rates. We project antimicrobial use in each country by combining mean antimicrobial use coefficients per species group with OECD/FAO Agricultural Outlook and FAO FishStat production volumes. We estimate global antimicrobial consumption in 2017 at 10,259 tons (95% uncertainty interval [UI] 3163-44,727 tons), increasing 33% to 13,600 tons in 2030 (UI 4193-59,295). The Asia-Pacific region represents the largest share (93.8%) of global consumption, with China alone contributing 57.9% of global consumption in 2017. Antimicrobial consumption intensity per species group was: catfish, 157 mg kg-1 (UI 9-2751); trout, 103 mg kg-1 (UI 5-1951); tilapia, 59 mg kg-1 (UI 21-169); shrimp, 46 mg kg-1 (UI 10-224); salmon, 27 mg kg-1 (UI 17-41) and a pooled species group, 208 mg kg-1, (UI 70-622). All antimicrobial classes identified in the review are classified as medically important. We estimate aggregate global human, terrestrial and aquatic food animal antimicrobial use in 2030 at 236,757 tons (95% UI 145,525-421,426), of which aquaculture constitutes 5.7% but carries the highest use intensity per kilogram of biomass (164.8 mg kg-1). This analysis calls for a substantial scale-up of surveillance capacities to monitor global trends in antimicrobial use. Current evidence, while subject to considerable uncertainties, suggests that for some species groups antimicrobial use intensity surpasses consumption levels in terrestrial animals and humans. Acknowledging the fast-growing nature of aquaculture as an important source of animal nutrition globally, our findings highlight the urgent need for enhanced antimicrobial stewardship in a high-growth industry with broad links to water and ecosystem health.


Asunto(s)
Antiinfecciosos/uso terapéutico , Acuicultura/tendencias , Ecosistema , Salud Global/tendencias , Humanos
17.
Nat Commun ; 11(1): 5620, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159066

RESUMEN

Computational analyses of pathogen genomes are increasingly used to unravel the dispersal history and transmission dynamics of epidemics. Here, we show how to go beyond historical reconstructions and use spatially-explicit phylogeographic and phylodynamic approaches to formally test epidemiological hypotheses. We illustrate our approach by focusing on the West Nile virus (WNV) spread in North America that has substantially impacted public, veterinary, and wildlife health. We apply an analytical workflow to a comprehensive WNV genome collection to test the impact of environmental factors on the dispersal of viral lineages and on viral population genetic diversity through time. We find that WNV lineages tend to disperse faster in areas with higher temperatures and we identify temporal variation in temperature as a main predictor of viral genetic diversity through time. By contrasting inference with simulation, we find no evidence for viral lineages to preferentially circulate within the same migratory bird flyway, suggesting a substantial role for non-migratory birds or mosquito dispersal along the longitudinal gradient.


Asunto(s)
Enfermedades de las Aves/epidemiología , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/veterinaria , Virus del Nilo Occidental/genética , Animales , Enfermedades de las Aves/virología , Ecosistema , Ambiente , Variación Genética , Genoma Viral , Humanos , América del Norte , Filogenia , Filogeografía , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/clasificación , Virus del Nilo Occidental/aislamiento & purificación
18.
Curr Opin Environ Sustain ; 46: 43-45, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33133308

RESUMEN

SARS-CoV-2, and the disease it causes, COVID-19, is sweeping through the world, disrupting human activities everywhere. The consequences of this on-going event on societies are yet to be fully understood. The emergence of SARS-CoV-2 illustrates how human-environment interaction should be framing research on pathogen spillover. Furthermore, the geography of human contacts at various scales in our globalized and urbanized world affects its diffusion. Both elements plead for a robust backbone of geography of health, including land use, to understanding disease emergence and diffusion.

19.
Int J Infect Dis ; 99: 362-372, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32738486

RESUMEN

BACKGROUND: Rift Valley Fever (RVF) poses a threat to human and animal health throughout much of Africa and the Middle East and has been recognized as a global health security priority and a key preparedness target. METHODS: We combined RVF occurrence data from a systematic literature review with animal notification data from an online database. Using boosted regression trees, we made monthly environmental suitability predictions from January 1995 to December 2016 at a 5 × 5-km resolution throughout regions of Africa, Europe, and the Middle East. We calculated the average number of months per year suitable for transmission, the mean suitability for each calendar month, and the "spillover potential," a measure incorporating suitability with human and livestock populations. RESULTS: Several countries where cases have not yet been reported are suitable for RVF. Areas across the region of interest are suitable for transmission at different times of the year, and some areas are suitable for multiple seasons each year. Spillover potential results show areas within countries where high populations of humans and livestock are at risk for much of the year. CONCLUSIONS: The widespread environmental suitability of RVF highlights the need for increased preparedness, even in countries that have not previously experienced cases. These maps can aid in prioritizing long-term RVF preparedness activities and determining optimal times for recurring preparedness activities. Given an outbreak, our results can highlight areas often at risk for subsequent transmission that month, enabling decision-makers to target responses effectively.


Asunto(s)
Fiebre del Valle del Rift/epidemiología , Animales , Brotes de Enfermedades/prevención & control , Salud Global , Planificación en Salud , Humanos , Modelos Biológicos , Fiebre del Valle del Rift/etiología , Fiebre del Valle del Rift/prevención & control , Virus de la Fiebre del Valle del Rift , Medición de Riesgo , Estaciones del Año
20.
Mol Biol Evol ; 37(9): 2641-2654, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32407507

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown once again that coronavirus (CoV) in animals are potential sources for epidemics in humans. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogen of swine with a worldwide distribution. Here, we implemented and described an approach to analyze the epidemiology of PDCoV following its emergence in the pig population. We performed an integrated analysis of full genome sequence data from 21 newly sequenced viruses, along with comprehensive epidemiological surveillance data collected globally over the last 15 years. We found four distinct phylogenetic lineages of PDCoV, which differ in their geographic circulation patterns. Interestingly, we identified more frequent intra- and interlineage recombination and higher virus genetic diversity in the Chinese lineages compared with the USA lineage where pigs are raised in different farming systems and ecological environments. Most recombination breakpoints are located in the ORF1ab gene rather than in genes encoding structural proteins. We also identified five amino acids under positive selection in the spike protein suggesting a role for adaptive evolution. According to structural mapping, three positively selected sites are located in the N-terminal domain of the S1 subunit, which is the most likely involved in binding to a carbohydrate receptor, whereas the other two are located in or near the fusion peptide of the S2 subunit and thus might affect membrane fusion. Finally, our phylogeographic investigations highlighted notable South-North transmission as well as frequent long-distance dispersal events in China that could implicate human-mediated transmission. Our findings provide new insights into the evolution and dispersal of PDCoV that contribute to our understanding of the critical factors involved in CoVs emergence.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Coronavirus/genética , Genoma Viral , Glicoproteína de la Espiga del Coronavirus/genética , Enfermedades de los Porcinos/epidemiología , Proteínas Virales/genética , Animales , Evolución Biológica , China/epidemiología , Coronavirus/clasificación , Coronavirus/patogenicidad , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Variación Genética , Genómica , Humanos , Modelos Moleculares , Epidemiología Molecular , Sistemas de Lectura Abierta , Filogenia , Filogeografía , Estructura Secundaria de Proteína , Recombinación Genética , Selección Genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Porcinos/virología , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/virología , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...